Nitric oxide synthases (NOSs) are proposed to generate NO and citrulline from L-arginine in two steps: initial N-hydroxylation to generate Nomega-hydroxyarginine (NOHA) followed by a three-electron oxidation of the hydroxylated nitrogen to form products. Both steps consume NADPH and may involve heme iron-based activation of O2. Studies done under multiple-turnover conditions suggest that 0.5 mol of NADPH is consumed to convert 1 mol of NOHA to products, implying that one electron from NADPH may be sufficient. To test this, we studied NOHA oxidation under single-turnover conditions using neuronal NOS (nNOS), whose heme iron reduction requires bound calmodulin. The heme iron in calmodulin-bound nNOS was reduced with excess NADPH under anaerobic conditions, calmodulin was then dissociated from nNOS to prevent subsequent heme iron reduction, NOHA was added, and the reaction initiated by exposure to air. Spectra obtained at each step were consistent with buildup of NOHA-bound ferrous nNOS prior to air exposure. Reactions containing graded amounts of nNOS produced L-citrulline in linear relation (1.2 +/- 0.1 mol of citrulline per mole of nNOS). Nitrite and nitrate also accumulated as NO-derived products. Control reactions that contained L-arginine instead of NOHA, no enzyme, or ferric nNOS did not generate products. Thus supplying a single electron from NADPH to the heme iron permits nNOS to catalyze one full round of citrulline and NO synthesis from NOHA upon exposure to O2. These data provide a molecular explanation for the NADPH requirement in the second step of the biosynthetic reaction, implicate ferrous-dioxy nNOS as a critical reactant in that step, and eliminate a number of possible alternative catalytic mechanisms or products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi971414g | DOI Listing |
J Med Chem
January 2025
Ma̅tai Ha̅ora - Centre for Redox Biology and Medicine, Department of Biomedical Science and Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand.
In humans, the 2-oxoglutarate-dependent dioxygenases (2-OGDDs) catalyze hydroxylation reactions involved in cell metabolism, the biosynthesis of small molecules, DNA and RNA demethylation, the hypoxic response and the formation of collagen. The reaction is catalyzed by a highly oxidizing ferryl-oxo species produced when the active site non-heme iron engages molecular oxygen. Enzyme activity is specifically stimulated by l-ascorbic acid (ascorbate, vitamin C), an effect not well mimicked by other reducing agents.
View Article and Find Full Text PDFCatal Sci Technol
January 2025
Department of Chemistry and Chemical Biology, Stevens Institute of Technology 1 Castle Point Terrace Hoboken NJ 07030 USA
Engineered heme proteins possess excellent biocatalytic carbene N-H insertion abilities for sustainable synthesis, and most of them have His as the Fe axial ligand. However, information on the basic reaction mechanisms is limited, and ground states of heme carbenes involved in the prior computational mechanistic studies are under debate. A comprehensive quantum chemical reaction pathway study was performed for the heme model with a His analogue as the axial ligand and carbene from the widely used precursor ethyl diazoacetate with aniline as the substrate.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Chemistry, The University of Texas at San Antonio, Texas 78249, United States. Electronic address:
MarE, a heme-dependent enzyme, catalyzes a unique 2-oxindole-forming monooxygenation reaction from tryptophan metabolites. To elucidate its enzyme-substrate interaction mode, we present the first X-ray crystal structures of MarE in complex with its prime substrate, (2S,3S)-β-methyl-L-tryptophan and cyanide at 1.89 Å resolution as well as a truncated yet catalytically active version in complex with the substrate at 2.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. Electronic address:
Ethnopharmacological Relevance: Xinbao pill (XBP) is a renowned Chinese patent medicine, primarily efficacious in warming and nourishing the heart and kidneys, supplementing Qi to boost Yang, and promoting blood circulation to remove blood stasis. XBP has been utilized for the treatment of chronic heart failure (CHF) for nearly 30 years, but the lack of clarity regarding the active ingredients of XBP against CHF has hindered its clinical application and further promotion.
Aim Of The Study: To comprehensively elucidate the efficacy-specific ingredients and potential mechanism of XBP against CHF.
Mol Neurobiol
January 2025
Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
Secondary brain damageafter traumatic brain injury (TBI) involves oxidative stress, neuroinflammation, apoptosis, and necroptosis and can be reversed by understanding these molecular pathways. The objective of this study was to examine the impact of tasimelteon (Tasi) administration on brain injury through the nuclear factor erythroid 2-related factor 2 (NRF-2)/heme oxygenase-1 (HO-1) and receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) pathways in rats with TBI. Thirty-two male Wistar albino rats weighing 300-350 g were randomly divided into four groups: the control group, trauma group, Tasi-1 group (trauma + 1 mg/kg Tasi intraperitoneally), and Tasi-10 group (trauma + 10 mg/kg Tasi intraperitoneally).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!