Stathmin is a highly conserved ubiquitous cytoplasmic protein, phosphorylated in response to extracellular signals and during the cell cycle. Stathmin has recently been shown to destabilize microtubules, but the molecular mechanisms of this function remained unclear. We show here that stathmin directly interacts with tubulin. We assessed the conditions of this interaction and determined some its quantitative parameters using plasmon resonance, gel filtration chromatography, and analytical ultracentrifugation. The stathmin/tubulin interaction leads to the formation of a 7.7 S complex with a 60-A Stokes radius, associating one stathmin with two tubulin heterodimer molecules as determined by direct quantification by Western blotting. This interaction is sensitive to pH and ionic environment. Its equilibrium dissociation constant, determined by plasmon resonance measurement of kinetic constants, has an optimum value of 0.5 microM at pH 6.5. The affinity was lowered with a fully "pseudophosphorylated" 4-Glu mutant form of stathmin, suggesting that it is modulated in vivo by stathmin phosphorylation. Finally, analysis of microtubule dynamics by video microscopy shows that, in our conditions, stathmin reduces the growth rate of microtubules with no effect on the catastrophe frequency. Overall, our results suggest that the stathmin destabilizing activity on microtubules is related to tubulin sequestration by stathmin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.272.40.25029 | DOI Listing |
Zhongguo Fei Ai Za Zhi
November 2024
Lung Cancer Center, West China Hospital, Sichuan University; Sichuan Lung Cancer Institute, Chengdu 610041, China.
Background: Lung cancer is one of the malignant tumors with the highest morbidity and mortality rates worldwide, seriously threatening human health. Non-small cell lung cancer (NSCLC) accounts for more than 85% of all lung cancer cases. STMN1 is a microtubule depolymerizing protein widely present in the cytoplasm and its expression level is associated with the prognosis of NSCLC patients.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA.
Prostate cancer (PCa) is the second leading cause of cancer-related mortality among men in the United States. While PCa initially responds to androgen deprivation therapy, a significant portion progresses to castration-resistant PCa. Approximately 20-25% of these cases acquire aggressive neuroendocrine (NE) features, ultimately leading to neuroendocrine prostate cancer (NEPC).
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy.
The development of ground-breaking Survival Motor Neuron (SMN) replacement strategies has revolutionized the field of Spinal Muscular Atrophy (SMA) research. However, the limitations of these therapies have now become evident, highlighting the need for the development of complementary targets beyond SMN replacement. To address these challenges, here we explored, in in vitro and in vivo disease models, Stathmin-2 (STMN2), a neuronal microtubule regulator implicated in neurodegenerative diseases like Amyotrophic Lateral Sclerosis (ALS), as a novel SMN-independent target for SMA therapy.
View Article and Find Full Text PDFProstate cancer (PCa) is the second leading cause of cancer-related mortality among men in the United States. While PCa initially responds to androgen deprivation therapy, a significant portion progresses to castration-resistant PCa. Approximately 20-25% of these cases acquire aggressive neuroendocrine (NE) features, ultimately leading to neuroendocrine prostate cancer (NEPC).
View Article and Find Full Text PDFJ Neurol
December 2024
Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deletions or mutations of survival of motor neuron 1 (SMN1) gene. To date, the mechanism of selective cell death of motor neurons as a hallmark of SMA is still unclear. The severity of SMA is dependent on the amount of survival motor neuron (SMN) protein, which is an essential and ubiquitously expressed protein involved in various cellular processes including regulation of cytoskeletal dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!