Hyperthyroidism potentiates the in vivo hepatotoxicity of 1,1-dicholoroethylene (DCE) in rats, with a concomitant increase in [14C]-DCE covalent binding. The enhanced injury produced in hyperthyroid livers by DCE could be due to alterations in either the bioactivation or detoxication phases of DCE metabolism. Previous in vitro studies suggested that hyperthyroidism did not potentiate DCE hepatotoxicity by increasing DCE oxidation to intermediates which were able to covalently bind. Several factors, however, that could contribute to the magnitude of DCE bioactivation or covalent binding were not examined. Our objectives were to characterize the effects of hyperthyroidism in male Sprague-Dawley rats on: (1) covalent binding of [14C]-DCE to microsomes and other subcellular fractions, (2) microsomal mixed-function oxidase (MFO) and glutathione S-transferase (GST) activities, and (3) inactivation of microsomal enzyme activities by presumptive DCE reactive intermediates. Hyperthyroid (HYPERT) and euthyroid (EUT) rats received 3 s.c. injections of thyroxine (100 micrograms/100 g) or vehicle, respectively, at 48-h intervals; microsomes and other subcellular fractions were isolated from HYPERT and EUT livers 24 h after the last injection. [14C]-DCE-derived covalent binding was consistently greater in EUT than HYPERT microsomes. The absence of NADH, and the addition of low concentrations (0.1 and 0.5 mM), but not higher concentrations (> 1 mM), of glutathione (GSH) diminished covalent binding to a greater extent in HYPERT than EUT microsomes. Covalent binding in mitochondrial, nuclear, and cytosolic fractions of EUT and HYPERT livers was equivalent. Regression analysis of covalent binding to liver cell fractions from both EUT and HYPERT rats showed a significant correlation with P-450 content. Hyperthyroidism decreased microsomal, but not mitochondrial, cytochrome P-450 content, and MFO activities for 7-ethoxycoumarin and benzphermine were similarly decreased. Hyperthyroidism also diminished microsomal GST activity, and altered GST kinetics for both GSH and 1-chloro-2,4-dinitrobenzene (CDNB). The magnitude of inactivation of MFO and GST activities in the presence of DCE (presumably by DCE reactive intermediates) was comparable between EUT and HYPERT microsomes. When covalent binding was standardized to cytochrome P-450 concentrations in microsomes and mitochondria, HYPERT fractions exhibited slightly greater covalent binding than EUT fractions, suggesting that hyperthyroidism does not reduce the capacity of P-450 hemoproteins to bioactive DCE. Thus, potentiation of DCE hepatotoxicity by hyperthyroidism may be predominantly due to diminished Phase II constituents, and major increases in reactive intermediate/conjugates that covalently bind to and impair critical cellular molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00984109708984059 | DOI Listing |
Nat Commun
January 2025
Department of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
The generation of radicals through photo-Fenton-like reactions demonstrates significant potential for remediating emerging organic contaminants (EOCs) in complex aqueous environments. However, the excitonic effect, induced by Coulomb interactions between photoexcited electrons and holes, reduces carrier utilization efficiency in these systems. In this study, we develop Cu single-atom-loaded covalent organic frameworks (Cu/COFs) as models to modulate excitonic effects.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75015 Paris, France. Electronic address:
Protein-carbohydrate interactions play a crucial role in numerous fundamental biological processes. Thus, description and comparison of the carbohydrate binding site (CBS) architecture is of great importance for understanding of the underlying biological mechanisms. However, traditional approaches for carbohydrate-binding protein analysis and annotation rely primarily on the sequence-based methods applied to specific protein classes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.
Sulfur-fluoride exchange (SuFEx) reaction is an emerging class of click chemistry reaction. Owing to its efficient reactivity under physiological conditions, SuFEx reaction is used to construct covalent protein drugs. Herein, a covalent affibody-molecular glue drug conjugate nanoagent is reported, which can irreversibly bind with its target protein through proximity-enabled SuFEx reaction.
View Article and Find Full Text PDFBiometals
January 2025
Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
Mercury is widely known for its detrimental effects on living organisms, whether in its elemental or bonded states. Recent comparative studies have shed light on the biochemical implications of mercury ingestion, both in low, persistent concentrations and in elevated acute dosages. Studies have presented models that elucidate how mercury disrupts healthy cells.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China.
Introduction: The COVID-19 pandemic has necessitated rapid advancements in therapeutic discovery. This study presents an integrated approach combining machine learning (ML) and network pharmacology to identify potential non-covalent inhibitors against pivotal proteins in COVID-19 pathogenesis, specifically B-cell lymphoma 2 (BCL2) and Epidermal Growth Factor Receptor (EGFR).
Method: Employing a dataset of 13,107 compounds, ML algorithms such as k-Nearest Neighbors (kNN), Support Vector Machine (SVM), Random Forest (RF), and Naïve Bayes (NB) were utilized for screening and predicting active inhibitors based on molecular features.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!