Evidence suggests that Rett syndrome is a genetic disorder; however, an etiologic genetic model has yet to be identified. The purpose of this study was to apply a statistical model, Sartwell's incubation period model, to estimate the incubation period of Rett syndrome and postulate further on the etiology of Rett syndrome. Sartwell's model was used to test the hypothesis that the age of onset of developmental regression distributions approximate a logarithmic normal model and thus the etiologic factors of Rett syndrome occur in utero or prior to conception. Data from three case-series of Rett syndrome from different geographic regions were used for the analyses. Curves resulting from the analyses demonstrated a good approximation to the logarithmic normal distribution, indicating a good fit of the data to Sartwell's model. In conclusion, the incubation period of Rett syndrome fits the logarithmic normal model, which is consistent with the theory that a major causal factor for Rett syndrome most likely occurs in utero or prior to conception, eg, a defective gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/088307389701200604 | DOI Listing |
J Neurodev Disord
January 2025
Rett Syndrome Research Trust, Trumbull, CT, USA.
Background: Preclinical studies and anecdotal case reports support the potential therapeutic benefit of low-dose oral ketamine as a treatment of clinical symptoms in Rett syndrome (RTT); however, no controlled studies have been conducted in RTT to evaluate safety, tolerability and efficacy.
Design: This was a sequentially initiated, dose-escalating cohort, placebo-controlled, double blind, randomized sequence, cross-over study of oral ketamine in 6-12-year-old girls with RTT to evaluate short-term safety and tolerability and explore efficacy.
Methods: Participants were randomized to either five days treatment with oral ketamine or matched placebo, followed by a nine-day wash-out period and then crossed-over to the opposite treatment.
BMJ Case Rep
January 2025
Paediatrics, King George's Medical College, Lucknow, Uttar Pradesh, India.
We present the case of a toddler displaying neuroregression post-acute gastroenteritis, initially suggesting neurodegenerative disorders. Further investigations showed atypical results-neuroimaging was inconsistent with suspected disorders, while fundus evaluation, evoked potentials and nerve conduction velocity were normal. Specialised tests using gas chromatography mass spectrometry and tandem mass spectrometry identified methylmalonic acidaemia (MMA), implicating abnormal neurometabolism.
View Article and Find Full Text PDFEpilepsy Res
January 2025
Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China. Electronic address:
Mutations in methyl CpG binding protein 2 (MeCP2) are linked to Rett syndrome, in which epilepsy is one of the most well-described disorders. However, little is known about the specific role of MeCP2 during epileptogenesis. Our previous study has demonstrated that MeCP2 has a unique control on the development of mossy fiber sprouting (MFS) in the epileptic hippocampus.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Molecular Biology and Pathology, National Research Council, 00185, Rome, Italy.
Mutations of the MECP2 gene lead to Rett syndrome (RTT), a rare developmental disease causing severe intellectual and physical disability. How the loss or defective function of MeCP2 mediates RTT is still poorly understood. MeCP2 is a global gene expression regulator, acting at transcriptional and post-transcriptional levels.
View Article and Find Full Text PDFAnn Clin Transl Neurol
January 2025
Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA.
Objective: Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) result from under- and overexpression of MECP2, respectively. Preclinical studies using genetic-based treatment showed robust phenotype recovery for both MDS and RTT. However, there is a risk of converting MDS to RTT, or vice versa, if accurate MeCP2 levels are not achieved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!