The stress-sensing systems leading to the cellular heat shock response (HSR) and the mechanism responsible for the desensitizing of this response in stress-acclimated cells are largely unknown. Here it is demonstrated that there is a close correlation between a 3 degrees C increase in the temperature required for maximal activation of a heat-shock (HS)-inducible gene in Saccharomyces cerevisiae and an increase in the percentage of cellular unsaturated fatty acids when cells are subjected to extended periods of growth at 37 degrees C. The latter occurs with the same kinetics as HS gene down-regulation during a prolonged HS and is reversed by reacclimation to growth at 25 degrees C. The transient nature of the HS may therefore be due to a lipid-mediated decrease in cellular heat sensitivity. Further evidence that unsaturated fatty acids desensitize cells to heat, with a resultant down-regulation of the HSR, is provided by demonstrating a 9 degrees C increase in the temperature required for maximal induction of this HS-inducible gene in cells containing high levels of unsaturated fatty acids assimilated during anaerobic growth at 25 degrees C.

Download full-text PDF

Source
http://dx.doi.org/10.1099/00221287-143-9-3063DOI Listing

Publication Analysis

Top Keywords

unsaturated fatty
12
fatty acids
12
growth degrees
12
transient nature
8
heat shock
8
shock response
8
cellular heat
8
degrees increase
8
increase temperature
8
temperature required
8

Similar Publications

Background: The objective of this study was to evaluate the effects of dietary fatty acids (FA) saturation and lysophospholipids supplementation on growth, meat quality, oxidative stability, FA profiles, and lipid metabolism of finishing beef bulls. Thirty-two Angus bulls (initial body weight: 623 ± 22.6 kg; 21 ± 0.

View Article and Find Full Text PDF

Osteoarthritis (OA) is characterized by articular cartilage degeneration, leading to pain and loss of joint function. Recent studies have demonstrated that omega-3 (ω3) polyunsaturated fatty acid (PUFA) supplementation can decrease injury-induced OA progression in mice fed a high-fat diet. Furthermore, PUFAs have been shown to influence the mechanical properties of chondrocyte membranes, suggesting that alterations in mechanosensitive ion channel signaling could contribute to the mechanism by which ω3 PUFAs decreased OA pathogenesis.

View Article and Find Full Text PDF

Public Health.

Alzheimers Dement

December 2024

Huashan hospital, Fudan University, Shanghai, Shanghai, China.

Background: Cohort studies report inconsistent associations between body mass index (BMI) and all-cause incident dementia. Furthermore, evidence on fat distribution and body composition measures are scarce and few studies estimated the association between early life adiposity and dementia risk.

Method: 322,336 individuals of European ancestry were included in the main analysis after exluding people with baseline dementia, who are younger than 50 years old and who are non-white.

View Article and Find Full Text PDF

Vegetables containing sulfur compounds promote trans-isomerization of unsaturated fatty acids in triacylglycerols during the cooking process.

Food Res Int

January 2025

Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan; Graduate School of Environmental and Human Sciences, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan. Electronic address:

Growing evidence indicates that the intake of trans-fatty acids (TFAs) has been associated with a higher risk of cardiovascular disease; therefore, various industrial measures have been taken to reduce the amount of TFAs consumed. However, research on TFAs formed during cooking is limited. Isothiocyanates and polysulfides, which are widely distributed in various vegetables, have recently been shown to promote the cis-trans isomerization of double bonds.

View Article and Find Full Text PDF

Lipophilic antioxidants in edible oils: Mechanisms, applications and interactions.

Food Res Int

January 2025

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China. Electronic address:

Essential fatty acids (EFAs) in edible oils are crucial for human nutrition. However, their high unsaturation renders edible oils susceptible to oxidation during storage and processing. The addition of lipophilic antioxidants is an effective strategy to inhibit oxidation and safeguard the nutritional integrity of edible oils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!