Localized 31P MR spectroscopy of the transplanted human kidney in situ shows altered metabolism in rejection and acute tubular necrosis.

J Magn Reson Imaging

Department of Diagnostic Radiology, University of Cologne, Köln (Lindenthal), Federal Republic of Germany.

Published: January 1998

The purpose of this study was to investigate the function of transplant kidneys in situ, and to detect pathologic changes, using volume-selective phosphorous NMR spectroscopy (31P MRS). Localized 31P MR spectra were obtained from 37 patients using a whole-body MR scanner with a combination of surface coils, adiabatic excitation pulses, and a modified image-selected in vivo spectroscopy (ISIS) sequence. Seventeen patients with pathologic changes after renal transplant were compared with a control group of 20 patients with no evidence of transplant dysfunction. The transplant kidneys with rejection reaction showed higher ratios of inorganic phosphate (P2i) to adenosine triphosphate-alpha (ATP-alpha) than the normal control group (.4 +/- .16 compared with .22 +/- .11, P = .01) and reduced pH. The spectra of transplant kidneys with tubular necrosis had lower phosphomonoester (PME)/phosphodiester (PDE) ratios than the control group (.65 +/- .35 compared with .96 +/- .5, P = .04). The pathologies of rejection and tubular necrosis could be differentiated from each other by pH (6.93 +/- .1 in rejection versus 7.14 +/- .19 in tubular necrosis, P = .04). Preliminary results indicate that localized image-guided 31P MR spectroscopy of transplant kidneys in situ can detect rejection reactions and acute tubular necrosis noninvasively, providing an incentive for further research.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.1880070514DOI Listing

Publication Analysis

Top Keywords

tubular necrosis
20
transplant kidneys
16
control group
12
localized 31p
8
31p spectroscopy
8
acute tubular
8
kidneys situ
8
situ detect
8
pathologic changes
8
group +/-
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!