Purine nucleoside phosphorylase. 2. Catalytic mechanism.

Biochemistry

Central Research Laboratory, Ciba-Geigy Ltd., Basel, Switzerland. mark.erion.gensia.com

Published: September 1997

X-ray crystallography, molecular modeling, and site-directed mutagenesis were used to delineate the catalytic mechanism of purine nucleoside phosphorylase (PNP). PNP catalyzes the reversible phosphorolysis of purine nucleosides to the corresponding purine base and ribose 1-phosphate using a substrate-assisted catalytic mechanism. The proposed transition state (TS) features an oxocarbenium ion that is stabilized by the cosubstrate phosphate dianion which itself functions as part of a catalytic triad (Glu89-His86-PO4=). Participation of phosphate in the TS accounts for the poor hydrolytic activity of PNP and is likely to be the mechanistic feature that differentiates phosphorylases from glycosidases. The proposed PNP TS also entails a hydrogen bond between N7 and a highly conserved Asn. Hydrogen bond donation to N7 in the TS stabilizes the negative charge that accumulates on the purine ring during glycosidic bond cleavage. Kinetic studies using N7-modified analogs provided additional support for the hydrogen bond. Crystallographic studies of 13 human PNP-ligand complexes indicated that PNP uses a ligand-induced conformational change to position Asn243 and other key residues in the active site for catalysis. These studies also indicated that purine nucleosides bind to PNP with a nonstandard glycosidic torsion angle (+anticlinal) and an uncommon sugar pucker (C4'-endo). Single point energy calculations predicted the binding conformation to enhance phosphorolysis through ligand strain. Structural data also suggested that purine binding precedes ribose 1-phosphate binding in the synthetic direction whereas the order of substrate binding was less clear for phosphorolysis. Conservation of the catalytically important residues across nucleoside phosphorylases with specificity for 6-oxopurine nucleosides provided further support for the proposed catalytic mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi961970vDOI Listing

Publication Analysis

Top Keywords

catalytic mechanism
16
hydrogen bond
12
purine nucleoside
8
nucleoside phosphorylase
8
purine nucleosides
8
ribose 1-phosphate
8
purine
7
pnp
6
catalytic
5
phosphorylase catalytic
4

Similar Publications

Recent Advances in Radical Coupling Reactions Directly Involving Bicyclo[1.1.1]pentane (BCP).

Top Curr Chem (Cham)

January 2025

School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.

BCP (bicyclo[1.1.1]pentane) is an ideal saturated carbon bioisostere, instead of the traditional benzene group, which has been extensively developed.

View Article and Find Full Text PDF

Phytoene synthase (PSY) is one of key enzymes in carotenogenesis that catalyze two molecules of geranylgeranyl diphosphate to produce phytoene. PSY is widespread in bacteria, archaea, and eukaryotes. Currently, functional role and catalytic mechanism of archaeal PSY homologues have not been fully clarified due to the limited reports.

View Article and Find Full Text PDF

Unveiling of Hydrogen Spillover Mechanisms on Tungsten Oxide Surfaces.

J Am Chem Soc

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Hydrogen spillover is an important process in catalytic hydrogenation reactions, facilitating H activation and modulating surface chemistry of reducible oxide catalysts. This study focuses on the unveiling of platinum-induced hydrogen spillover on monoclinic tungsten trioxide (γ-WO), employing ambient pressure X-ray photoelectron spectroscopy, density functional theory calculations and microkinetic modeling to investigate the dynamic evolution of surface states at varied temperatures. At room temperature, hydrogen spillover results in the formation of W and hydrogen intermediates (hydroxyl species and adsorbed water), facilitated by Pt metal clusters.

View Article and Find Full Text PDF

Construction of Escherichia coli cell factory for efficient synthesis of indigo.

Chembiochem

January 2025

Jiangnan University, State Key Laboratory of Food Science and Technology, 1800 Lihu Road, Wuxi, China, 214122, Wuxi, CHINA.

Indigo is widely used in dyes, medicines and semiconductors materials due to its excellent dyeing efficiency, antibacterial, antiviral, anticancer, anti-corrosion, and thermostability properties. Here, a biosynthetic pathway for indigo was designed, integrating two enzymes (EcTnaA, MaFMO) into a higher L-tryptophan-producing the strain Escherichia coli TRP. However, the lower catalytic activity of MaFMO was a bottleneck for increasing indigo titers.

View Article and Find Full Text PDF

SAMHD1 shapes deoxynucleotide triphosphate homeostasis by interconnecting the depletion and biosynthesis of different dNTPs.

Nat Commun

January 2025

Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.

SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!