Antitermination protein N regulates the transcriptional program of phage lambda through recognition of RNA enhancer elements. Binding of an arginine-rich peptide to one face of an RNA hairpin organizes the other, which in turn binds to the host antitermination complex. The induced RNA structure mimics a GNRA hairpin, an organizational element of rRNA and ribozymes. The two faces of the RNA, bridged by a sheared GA base pair, exhibit a specific pattern of base stacking and base flipping. This pattern is extended by stacking of an aromatic amino acid side chain with an unpaired adenine at the N-binding surface. Such extended stacking is coupled to induction of a specific internal RNA architecture and is blocked by RNA mutations associated in vivo with loss of transcriptional antitermination activity. Mimicry of a motif of RNA assembly by an RNA-protein complex permits its engagement within the antitermination machinery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC275392 | PMC |
http://dx.doi.org/10.1101/gad.11.17.2214 | DOI Listing |
Pest Manag Sci
January 2025
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
Background: Exogenous double-stranded RNA (dsRNA) has the potential to serve as an effective alternative to conventional chemical pesticides for the control of insect pests, because it can specifically inhibit essential gene expression in these organisms. However, identifying suitable gene targets remains a crucial step in the development of RNA interference (RNAi)-based pest control strategies.
Results: In this study, three apoptosis-related genes were selected to evaluate their potential for RNAi-induced lethality in Henosepilachna vigintioctopunctata via foliar spray dsRNAs.
HLA
January 2025
Histocompatibilidad, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain.
Description of the novel HLA-DQA1*05:118 and -DQB1*03:01:01:73 alleles.
View Article and Find Full Text PDFHLA
January 2025
Strand Life Sciences, Bangalore, Karnataka, India.
The novel HLA-DQB1*06:469 allele differs from HLA-DQB1*06:01:01:01 by one nucleotide substitution in codon 187 in exon 3.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.
View Article and Find Full Text PDFEnviron Microbiol Rep
February 2025
Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Mexico.
The production of traditional agave spirits in Mexico, such as mezcal, involves a process that uses environmental microorganisms to ferment the cooked must from agave plants. By analysing these microorganisms, researchers can understand the dynamics of microbial communities at the interface of natural and human-associated environments. This study involved 16S and ITS amplicon sequencing of 99 fermentation tanks from 42 distilleries across Mexico.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!