Plasmodium vivax: epitope mapping of monoclonal antibodies against the N-terminal region of the merozoite surface protein 1.

Behring Inst Mitt

Departamento de Parasitologia (ICBII), Universidade de São Paulo, Brazil.

Published: March 1997

Plasmodium vivax is the most widely distributed human malaria with an estimate of 35 million cases per year. The deduced amino acid sequence comparisons of the Merozoite Surface Protein 1 (MSP1) from several plasmodial species, including that of P. vivax (PvMSP1), revealed the existence of highly conserved blocks and polymorphic blocks. We had previously shown that sequences within conserved blocks from the N-terminal region of the PvMSP1 were poorly immunogenic in natural human infections. These results suggest that these regions code for important and unknown structural and/or functional features and thus they could potentially be tested as a sub-unit PvMSP1 vaccine. In the present study, a battery of monoclonal antibodies (Mabs) was produced against the N-terminal region of the PvMSP1 in an attempt to determine whether these N-terminal ICBs contained all the epitopes exposed on the native molecule. The results suggest that the most terminal ICB2 and ICB3 blocks are not exposed on the surface of the PvMSP1 native molecule and clearly eliminate the possibility of considering the N-terminal domains as unique components of a sub-unit PvMSP1 vaccine candidate.

Download full-text PDF

Source

Publication Analysis

Top Keywords

n-terminal region
12
plasmodium vivax
8
monoclonal antibodies
8
merozoite surface
8
surface protein
8
conserved blocks
8
region pvmsp1
8
sub-unit pvmsp1
8
pvmsp1 vaccine
8
native molecule
8

Similar Publications

Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.

View Article and Find Full Text PDF

The first marine pestivirus, Phocoena pestivirus (PhoPeV), isolated from harbor porpoise, has been recently described. To further characterize this unique pestivirus, its host cell tropism and growth kinetics were determined in different cell lines. In addition, the interaction of PhoPeV with innate immunity in porcine epithelial cells and the role of selected cellular factors involved in the viral entry and RNA replication of PhoPeV were investigated in comparison to closely and distantly related pestiviruses.

View Article and Find Full Text PDF

Background: Marek's disease (MD) is a pathology affecting chickens caused by Marek's disease virus (MDV), an acute transforming alphaherpesvirus of the genus . MD is characterized by paralysis, immune suppression, and the rapid formation of T-cell (primarily CD4+) lymphomas. Over the last 50 years, losses due to MDV infection have been controlled worldwide through vaccination; however, these live-attenuated vaccines are non-sterilizing and potentially contributed to the virulence evolution of MDV field strains.

View Article and Find Full Text PDF

Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!