Mechanisms of antigenic variation in African trypanosomes.

Behring Inst Mitt

Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam, The Netherlands.

Published: March 1997

African trypanosomes can escape destruction by the immune system of their mammalian host by antigenic variation of the trypanosome surface coat. This coat is mainly composed of a single protein species, the Variant Surface Glycoprotein or VSG. The genes for VSGs are expressed in a polycistronic telomeric expression site together with at least eight expression site-associated genes (ESAGs). Trypanosomes may switch coat either by replacing the VSG gene in the active expression site by a different one, or by activating another expression site with concomitant silencing of the previously active one. Here we review our present knowledge of antigenic variation in Trypanosome brucei. We focus on four questions: How do trypanosomes switch from one VSG gene expression site to another one? What is the role of the novel base J in silencing expression sites? What is the functional significance of the antigenic variation of the heterodimeric transferrin receptor encoded by two ESAG genes? Why do trypanosomes have multiple expression sites at all?

Download full-text PDF

Source

Publication Analysis

Top Keywords

antigenic variation
16
expression site
16
african trypanosomes
8
variation trypanosome
8
trypanosomes switch
8
vsg gene
8
expression
7
trypanosomes
5
mechanisms antigenic
4
variation
4

Similar Publications

Molecular surveillance of FMD epidemiology is a fundamental tool for advancing our understanding of virus biology, monitoring virus evolution, and guiding vaccine design. The accessibility of genetic data will facilitate a more comprehensive delineation of FMDV phylogeny on a global scale. In this study, we investigated the FMDV strains circulating in Russia during the 2013-2014 period in geographically distant regions utilizing whole genome sequencing followed by maximum-likelihood phylogenetic reconstruction of whole genome and VP1 gene sequences.

View Article and Find Full Text PDF

Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.

View Article and Find Full Text PDF

Foot-and-mouth disease (FMD) continues to pose a significant threat in Egypt, necessitating thorough analyses of FMD virus (FMDV) outbreaks. This study analyzed 144 suspected FMD cases across 52 animal collections during the years 2017-2018 and 2022. Recurrent FMD outbreaks in vaccinated dairy cattle were investigated.

View Article and Find Full Text PDF

The human gut microbiome within the gastrointestinal tract continuously adapts to variations in diet, medications, and host physiology. A central strategy for genetic adaptation is epigenetic phase variation (ePV) mediated by bacterial DNA methylation, which can regulate gene expression, enhance clonal heterogeneity, and enable a single bacterial strain to exhibit variable phenotypic states. Genome-wide and site-specific ePV have been well characterized in human pathogens' antigenic variation and virulence factor production.

View Article and Find Full Text PDF

The spirochete causes Lyme disease. In some patients, an excessive, dysregulated proinflammatory immune response can develop in joints leading to persistent arthritis. In such patients, persistence of antigenic peptidoglycan (PG) fragments within joint tissues may contribute to the immunopathogenesis, even after appropriate antibiotic treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!