AI Article Synopsis

  • Genetic factors play a significant role in individual lipid responses to dietary fats and cholesterol, particularly through mutations in the apo A-IV gene.
  • A study involving 41 healthy males revealed that those with the 347Ser mutation experienced a greater reduction in LDL cholesterol levels when switching to a lower saturated fat diet compared to those with the 347Thr allele.
  • The interaction between two genetic mutations in apo A-I and apo A-IV was shown to have an additive effect on cholesterol response to diets, emphasizing the importance of genetics in dietary fat metabolism.

Article Abstract

Lipid response to dietary fat and cholesterol is, to a large extent, genetically controlled. Apoprotein (apo) A-IV has been related to fat absorption and to the activation of some of the enzymes involved in lipid metabolism. One mutation has been described in the apo A-IV gene that causes substitution of Ser for Thr at position 347. To study the influence of this mutation on the plasma LDL cholesterol (LDL-C) response in diets of various fat content and fatty acid saturation, 41 healthy male subjects were studied, 25 of whom were homozygous for the Thr allele (347Thr) and the rest who were either homozygous (n = 2) or heterozygous carriers of the Ser allele (347Ser). They consumed three consecutive diets, each of 4 weeks' duration: one rich in saturated fat (SFA diet: 38% fat, 20% saturated), a National Cholesterol Education Program (NCEP) type 1 diet (28% fat, 10% saturated), and a third rich in monounsaturated fat (MUFA diet; 38% fat, 22% monounsaturated). Carriers of the 347Ser allele presented a greater decrease in total cholesterol (-0.7 vs -0.44 mmol/L, P < .034), LDL-C (-0.62 vs -0.31 mmol/L, P < .012), and apo B (-14 vs -8 mg/dL, P < .01) levels when they were switched from the SFA to the NCEP type 1 diet than homozygous carriers of the 347Thr allele. The change from the NCEP type 1 to the MUFA diet resulted in a greater increase in total cholesterol (0.18 vs -0.05 mmol/L, P < .028) and apo B (5 vs -1 mg/dL, P < .006) levels in the 347Ser than in the 347Thr individuals. In a previous study, we demonstrated that the G-->A polymorphism at position -76 of the gene promoter of apo A-I affects the LDL-C response to dietary fat. We therefore decided to study the effect of the interaction between these mutations on this response. We found that both mutations have an additive effect on total cholesterol, LDL-C, and apo B dietary-induced changes. Our results suggest that total cholesterol and LDL-C response to dietary fat is influenced by the 347Ser mutation of apo A-IV.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.atv.17.8.1532DOI Listing

Publication Analysis

Top Keywords

response dietary
16
dietary fat
16
total cholesterol
16
apo a-iv
12
cholesterol ldl-c
12
ldl-c response
12
ncep type
12
fat
11
plasma ldl
8
cholesterol
8

Similar Publications

Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.

View Article and Find Full Text PDF

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster.

Nat Commun

December 2024

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.

Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein.

View Article and Find Full Text PDF

Background And Objectives: The relationship between vitamin intake and diabetes mellitus (DM) has attracted growing attention. Only few studies have linked vitamin B2 (VB2) and development of DM. In this study, we aimed to assess the association between VB2 intake and DM among U.

View Article and Find Full Text PDF

Background: The Dietary Approaches to Stop Hypertension (DASH) are associated with reduced cardiovascular, diabetes risk, but the effect on obstructive sleep apnea (OSA) is uncertain.

Methods: This study used data from the National Health and Nutrition Examination Survey (NHANES). DASH score was assessed through 24-h dietary recall interviews, and OSA diagnosis in individuals was based on predefined criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!