We have identified two peptides corresponding to the male-specific HY minor histocompatibility Ags presented by HLA-B27 in transgenic rodents, isolated from whole cell extracts and from immunoprecipitated B27 molecules of male B27 rat spleen cells. HPLC peptide fractions that sensitized female B27 targets for lysis by B27-restricted anti-HY CTL were analyzed by electrospray tandem mass spectrometry using a new highly sensitive quadrupole/time-of-flight instrument. Two peptide sequences were obtained, KQYQKSTER and AVLNKSNREVR. Synthetic peptides corresponding to these sequences bound B27 in vitro and were recognized by distinct B27-restricted anti-HY CTL populations. Neither peptide sequence entirely matches known protein sequences or shows a resemblance to known Y chromosome genes, but both show homology to known autosomally encoded proteins. Both peptides were shown to be controlled by the Sxr(b) segment of the short arm of the mouse Y chromosome, a segment known to contain all previously identified HY Ags. Taken together, these findings suggest that the two peptides arise as a result of Y chromosome-regulated control of one or more autosomal gene products. Although arginine at position 2 is a dominant anchor residue for peptides bound to B27, neither B27-presented HY sequence contains this residue. These studies, employing sensitive new methodology for identification of MHC-bound peptides, significantly extend the complexity of the genetic basis of HY Ags and expand the repertoire of antigenically active peptides bound to B27.
Download full-text PDF |
Source |
---|
J Immunol
September 2024
Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
The central immunological role of HLA class I (HLA-I) in presenting peptide Ags to cellular components of the immune system has been the focus of intense study for >60 y. A confounding factor in the study of HLA-I has been the extreme polymorphism of these molecules. The mAb W6/32 has been a fundamental reagent bypassing the issue of polymorphism by recognizing an epitope that is conserved across diverse HLA-I allotypes.
View Article and Find Full Text PDFArthritis Res Ther
July 2024
Infection & Inflammation, UMR 1173, Inserm, UVSQ, Université Paris Saclay, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux, 78180, France.
Biomolecules
July 2023
Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA.
Cell surface HLA-I molecules (Face-1) consist of a polypeptide heavy chain (HC) with two groove domains (G domain) and one constant domain (C-domain) as well as a light chain, B2-microglobulin (B2m). However, HCs can also independently emerge unfolded on the cell surface without peptides as B2m-free HC monomers (Face-2), B2m-free HC homodimers (Face 3), and B2m-free HC heterodimers (Face-4). The transport of these HLA variants from ER to the cell surface was confirmed by antiviral antibiotics that arrest the release of newly synthesized proteins from the ER.
View Article and Find Full Text PDFElife
January 2023
Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
The serotonin transporter (SERT/SLC6A4) is arguably the most extensively studied solute carrier (SLC). During its eponymous action - that is, the retrieval of serotonin from the extracellular space - SERT undergoes a conformational cycle. Typical inhibitors (antidepressant drugs and cocaine), partial and full substrates (amphetamines and their derivatives), and atypical inhibitors (ibogaine analogues) bind preferentially to different states in this cycle.
View Article and Find Full Text PDFFront Immunol
August 2022
Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
Peptide-loaded Major Histocompatibility Complex (pMHC) class I molecules can be expressed in a single chain trimeric (SCT) format, composed of a specific peptide fused to the light chain beta-2 microglobulin (β2m) and MHC class I heavy chain (HC) by flexible linker peptides. pMHC SCTs have been used as effective molecular tools to investigate cellular immunity and represent a promising vaccine platform technology, due to their intracellular folding and assembly which is apparently independent of host cell folding pathways and chaperones. However, certain MHC class I HC molecules, such as the Human Leukocyte Antigen B27 (HLA-B27) allele, present a challenge due to their tendency to form HC aggregates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!