It has recently been found that in systemic lupus erythematosus (SLE), a multisystem inflammatory disorder characterized by autoantibody production and decreased cellular immune response, increased spontaneous production of IL-10 occurs. The immunomodulator AS101 (ammonium trichloro(dioxoethylene-0,0')tellurate) was previously shown to significantly decrease IL-10 levels in cancer patients and in murine models. This study shows that AS101 inhibits the development of SLE-related autoimmune pathological manifestations. AS101 decreased the spontaneous IL-10 production by mononuclear cells from SLE patients in vitro. In vivo, systemic injection of AS101 to SCID mice transplanted with mononuclear cells from SLE patients significantly decreased serum human IL-10 levels. There was also a decrease in all serum human Ig isotypes, in anti-dsDNA, and in anti-Sm Igs. In the New Zealand Black/New Zealand White/F1 model, AS101 significantly increased serum TNF-alpha and IFN-gamma while decreasing IL-10 levels; these changes were accompanied by a rapid decrease in anti-dsDNA and anti-ssDNA Igs. More importantly, continuous treatment of New Zealand Black/New Zealand White/F1 mice with AS101 for 6 mo led to the development of proteinuria in 30% of the treated mice compared with 100% in PBS-treated mice (p < 0.001). AS101 treatment reduced the level of immmune complex deposition in the glomeruli, prevented glomerular hypercellularity and mesangial expansion and led to a much smaller mean glomerular volume in treated mice (185 +/- 6 vs 428 +/- 47.103 microm3; p < 0.01). We suggest that treatment with a nontoxic immunomodulator such as AS101, previously used in phase II trials on cancer patients, may be an effective therapeutic approach for controlling SLE.

Download full-text PDF

Source

Publication Analysis

Top Keywords

immunomodulator as101
12
il-10 levels
12
as101
9
systemic lupus
8
lupus erythematosus
8
cancer patients
8
mononuclear cells
8
cells sle
8
sle patients
8
serum human
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!