The electrostatic properties of seven alpha/beta-barrel enzymes selected from different evolutionary families were studied: triose phosphate isomerase, fructose-1,6-bisphosphate aldolase, pyruvate kinase, mandelate racemase, trimethylamine dehydrogenase, glycolate oxidase, and narbonin, a protein without any known enzymatic activity. The backbone of the alpha/beta-barrel has a distinct electrostatic field pattern, which is dipolar along the barrel axis. When the side chains are included in the calculations the general effect is to modulate the electrostatic pattern so that the electrostatic field is generally enhanced and is focused into a specific area near the active site. We use the electrostatic flux through a square surface near the active site to gauge the functionally relevant magnitude of the electrostatic field. The calculations reveal that in six out of the seven cases the backbone itself contributes greater than 45% of the total flux. The substantial electrostatic contribution of the backbone correlates with the known preference of alpha/beta-barrel enzymes for negatively charged substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2143784PMC
http://dx.doi.org/10.1002/pro.5560060905DOI Listing

Publication Analysis

Top Keywords

electrostatic field
12
alpha/beta-barrel enzymes
8
active site
8
electrostatic
7
backbone
4
backbone contribution
4
contribution electrostatics
4
alpha/beta-barrel
4
electrostatics alpha/beta-barrel
4
alpha/beta-barrel proteins
4

Similar Publications

Unveiling a Tunable Moiré Bandgap in Bilayer Graphene/hBN Device by Angle-Resolved Photoemission Spectroscopy.

Adv Sci (Weinh)

January 2025

School of Physical Science and Technology, ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, 201210, P. R. China.

Over the years, great efforts have been devoted in introducing a sizable and tunable band gap in graphene for its potential application in next-generation electronic devices. The primary challenge in modulating this gap has been the absence of a direct method for observing changes of the band gap in momentum space. In this study, advanced spatial- and angle-resolved photoemission spectroscopy technique is employed to directly visualize the gap formation in bilayer graphene, modulated by both displacement fields and moiré potentials.

View Article and Find Full Text PDF

Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.

View Article and Find Full Text PDF

BSA/PEI/GOD modified cellulose nanocrystals for construction of hydrogel-based flexible glucose sensors for sweat detection.

J Mater Chem B

January 2025

School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.

With the miniaturization, integration and intelligence of sweat electrochemical sensor technology, hydrogel flexible sensors have demonstrated immense potential in the field of real-time and non-invasive personal health monitoring. However, it remains a challenge to integrate excellent mechanical properties, self-healing properties, and electrochemical sensing capabilities into the preparation of hydrogel-based flexible sensors. The utilization of CBPG (cellulose nanocrystals (CNCs)@bovine serum albumin (BSA)@polyethyleneimine (PEI) glucose oxidase (GOD) nanomaterial) as both an enhancing phase and sensor probe within a hydrogel matrix, with poly(vinyl alcohol) (PVA) serving as the primary network constituent, has been proposed as a non-invasive technique for monitoring trace glucose levels in sweat.

View Article and Find Full Text PDF

Step-necking growth of silicon nanowire channels for high performance field effect transistors.

Nat Commun

January 2025

School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, China.

Ultrathin silicon nanowires (diameter <30 nm) with strong electrostatic control are ideal quasi-1D channel materials for high-performance field effect transistors, while a short channel is desirable to enhance driving current. Typically, the patterning of such delicate channels relies on high-precision lithography, which is not applicable for large area electronics. In this work, we demonstrate that ultrathin and short silicon nanowires channels can be created through a local-curvature-modulated catalytic growth, where a planar silicon nanowires is directed to jump over a crossing step.

View Article and Find Full Text PDF

Noise reduction of low-dose electron holograms using the wavelet hidden Markov model.

Microscopy (Oxf)

January 2025

The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.

The precision in electron holography studies on electrostatic and magnetic fields depends on the image quality of an electron hologram. Enhancing the image quality of electron holograms is essential for the comprehensive analysis of weak electromagnetic fields; however, extended electron beam irradiation can lead to undesirable radiation damage and contamination. Recent studies have demonstrated that noise reduction using the wavelet hidden Markov model (WHMM) can improve the precision of phase analysis for limited thin-foiled crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!