The expression of the constitutive transcription factors activating transcription factor-2 (ATF-2), serum response factor (SRF) and cAMP/Ca response element binding factor (CREB), and the phosphorylation of SRF and CREB were studied in the untreated adult rat nervous system and following seizure activities and neurodegenerative stimuli. In the untreated rat, intense nuclear SRF immunoreactivity was present in the vast majority of neurons in the forebrain, cortex, striatum, amygdala and hippocampus, and in some scattered neurons in the medulla and spinal cord. In contrast, SRF immunoreactivity was absent in the midline areas of the forebrain, e.g., the globus pallidum and septum, and in the hypothalamus, thalamus, mesencephalon and motoneurons. Nuclear ATF-2 was expressed at high levels in apparently all neurons, but not glial cells, throughout the neuraxis except for those neuronal populations which exhibit a high basal level of c-Jun, i.e. dentate gyrus and the motoneurons of cranial and somatosensory neurons. CREB immunoreactivity was present at a rather uniform intensity in all neuronal and glial cells throughout the neuraxis. Two hours, but not 5 h or 24 h, following systemic application of kainic acid, an increase in SRF was detectable by western blot analysis in hippocampal and cortical homogenates whereas the expression of ATF-2 and CREB did not change. Phosphorylation of CREB at serine 133 and of SRF at serine 103 were studied with specific antisera. In untreated rats, intense phosphoCREB and phosphoSRF immunoreactivities labelled many glial cells and/or neurons with the highest levels in the dentate gyrus, the entorhinal cortex and the retrosplenial cortex. Following kainate-induced seizures, phosphoSRF-IR but not phosphoCREB-IR transiently increased between 0.5 h and 2 h. Following transection of peripheral or central nerve fibres such as optic nerve, medial forebrain bundle, vagal and facial nerve fibres, ATF-2 rapidly decreased in the axotomized neurons during that period when c-Jun was rapidly expressed. SRF remained unchanged and CREB disappeared in some axotomized subpopulations. Similar to axotomy, c-Jun increased and ATF-2 decreased in cultured adult dorsal root ganglion neurons following ultraviolet irradiation. The distribution of SRF and ATF-2 suggests that their putative target genes c-fos, junB, krox-24 and c-jun can be independently regulated from SRF and ATF-2. The suppression of ATF-2 and the expression of c-Jun following axotomy and ultraviolet irradiation might be part of a novel neuronal stress response in the brain that strongly resembles the stress response characterized in non-neuronal cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0306-4522(97)00170-xDOI Listing

Publication Analysis

Top Keywords

ultraviolet irradiation
12
glial cells
12
srf
9
activating transcription
8
transcription factor-2
8
serum response
8
response factor
8
camp/ca response
8
response element
8
element binding
8

Similar Publications

Effects of UV-B light exposure during automatic milking on vitamin D levels in Holstein Friesian cows.

Front Vet Sci

January 2025

Clinic for Reproduction and Large Animals-Section for Ruminants, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia.

Vitamin D is essential for cattle and can be synthesized in the skin under ultraviolet irradiation. This study investigated the effects of narrow-band UV-B irradiation during automatic milking on blood vitamin D concentration and the influence of hair and black skin areas on cutaneous vitamin D synthesis in Holstein Friesian cows. Fifty-one cows were stratified by milk yield, days after calving, and percentage of black skin, then divided into three groups: shaved and irradiated (80 J/m), unshaved and irradiated (129-305 J/m), and a control group.

View Article and Find Full Text PDF

Application of different lights in solving the marine biofouling problem of uranium extraction from seawater.

J Photochem Photobiol B

January 2025

School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China. Electronic address:

Marine biofouling remains a big problem of uranium (U(VI)) extraction from seawater. To better utilize sunlight in future, the anti-biofouling properties of typical light sources were evaluated, and ultraviolet (UV) light shows best anti-biofouling capability among studied lights. UV light can damage the cellular structure and intercept the proliferation of marine microorganisms (such as V.

View Article and Find Full Text PDF
Article Synopsis
  • Deep-ultraviolet (DUV) light is crucial for various fields such as manufacturing, molecular research, and biomedical imaging.
  • Aluminum nitride (AlN) metalenses offer a cost-effective and durable solution, achieving DUV focusing capabilities with a thin design of just 380 nm.
  • These metalenses successfully withstand intense laser conditions, enabling the precise creation of microstructures on different materials, highlighting their potential in advancing photonic technologies.
View Article and Find Full Text PDF

Light-Programmable g-CN Microrobots with Negative Photogravitaxis for Photocatalytic Antibiotic Degradation.

Research (Wash D C)

January 2025

Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Brno 61200, Czech Republic.

Microrobots enhance contact with pollutants through their movement and flow-induced mixing, substantially improving wastewater treatment efficiency beyond traditional diffusion-limited methods. g-CN is an affordable and environmentally friendly photocatalyst that has been extensively researched in various fields such as biomedicine and environmental remediation. However, compared to other photocatalytic materials like TiO and ZnO, which are widely used in the fabrication of micro- and nanorobots, research on g-CN for these applications is still in its early stages.

View Article and Find Full Text PDF

Diarrhetic shellfish toxins (DSTs) are widespread in marine environments, posing potential threats to marine ecosystems, shellfish aquaculture, and human health. Despite their prevalence, knowledge of the stability of dissolved DSTs in seawater is still limited. This study aimed to investigate the effects of bacteria, temperature, and irradiation on the stability of dissolved okadaic acid (OA) and dinophysistoxin-1 (DTX1) in seawater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!