In Drosophila, central nervous system (CNS) formation starts with the delamination from the neuroectoderm of about 30 neuroblasts (NBs) per hemisegment. They give rise to approximately 350 neurons and 30 glial cells during embryonic development. Understanding the mechanisms leading to cell fate specification and differentiation in the CNS requires the identification of the NB lineages. The embryonic lineages derived from 17 NBs of the ventral part of the neuroectoderm have previously been described (Bossing et al., 1996). Here we present 13 lineages derived from the dorsal part of the neuroectoderm and we assign 12 of them to identified NBs. Together, the 13 lineages comprise approximately 120 neurons and 22 to 27 glial cells which we include in a systematic terminology. Therefore, NBs from the dorsal neuroectoderm produce about 90% of the glial cells in the embryonic ventral ganglion. Two of the NBs give rise to glial progeny exclusively (NB 6-4A, GP) and five to glia as well as neurons (NBs 1-3, 2-5, 5-6, 6-4T, 7-4). These seven NBs are arranged as a group in the most lateral region of the NB layer. The other lineages (NBs 2-4, 3-3, 3-5, 4-3, 4-4, 5-4, clone y) are composed exclusively of neurons (interneurons, motoneurons, or both). Additionally, it has been possible to link the lateral cluster of even-skipped expressing cells (EL) to the lineage of NB 3-3. Along with the previously described clones, the vast majority (more than 90%) of cell lineages in the embryonic ventral nerve cord (thorax, abdomen) are now known. Moreover, previously identified neurons and most glial cells are now linked to certain lineages and, thus, to particular NBs. This complete set of data provides a foundation for the interpretation of mutant phenotypes and for future investigations on cell fate specification and differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1006/dbio.1997.8660DOI Listing

Publication Analysis

Top Keywords

glial cells
16
lineages derived
12
dorsal neuroectoderm
12
neurons glial
12
lineages
9
nbs
9
central nervous
8
nervous system
8
derived dorsal
8
cells embryonic
8

Similar Publications

There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

BoNT/Action beyond Neurons.

Toxicon

January 2025

National Council of Research (CNR), Institute of Biochemistry and Cell Biology, 00015 Monterotondo (RM), Italy.

Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control.

View Article and Find Full Text PDF

Background: Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury.

View Article and Find Full Text PDF

Background/objectives: Inflammation and oxidative stress are the main pathogenetic pathways involved in the development of several chronic degenerative diseases. Our study is aimed at assessing the antioxidant and anti-inflammatory activity of hydroalcoholic extracts obtained from wheat and its derivatives.

Methods: The content of total phenolic and total flavonoid compounds and antioxidant activity were carried out by ABTS and DPPH assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!