TRPC3 (or Htrp3) is a human member of the trp family of Ca2+-permeable cation channels. Since expression of TRPC3 cDNA results in markedly enhanced Ca2+ influx in response to stimulation of membrane receptors linked to phospholipase C (Zhu, X., J. Meisheng, M. Peyton, G. Bouley, R. Hurst, E. Stefani, and L. Birnbaumer. 1996. Cell. 85:661-671), we tested whether TRPC3 might represent a Ca2+ entry pathway activated as a consequence of depletion of intracellular calcium stores. CHO cells expressing TRPC3 after intranuclear injection of cDNA coding for TRPC3 were identified by fluorescence from green fluorescent protein. Expression of TRPC3 produced cation currents with little selectivity for Ca2+ over Na+. These currents were constitutively active, not enhanced by depletion of calcium stores with inositol-1,4,5-trisphosphate or thapsigargin, and attenuated by strong intracellular Ca2+ buffering. Ionomycin led to profound increases of currents, but this effect was strictly dependent on the presence of extracellular Ca2+. Likewise, infusion of Ca2+ into cell through the patch pipette increased TRPC3 currents. Therefore, TRPC3 is stimulated by a Ca2+-dependent mechanism. Studies on TRPC3 in inside-out patches showed cation-selective channels with 60-pS conductance and short (<2 ms) mean open times. Application of ionomycin to cells increased channel activity in cell-attached patches. Increasing the Ca2+ concentration on the cytosolic side of inside-out patches (from 0 to 1 and 30 microM), however, failed to stimulate channel activity, even in the presence of calmodulin (0.2 microM). We conclude that TRPC3 codes for a Ca2+-permeable channel that supports Ca2+-induced Ca2+-entry but should not be considered store operated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132548 | PMC |
http://dx.doi.org/10.1083/jcb.138.6.1333 | DOI Listing |
Pathol Res Pract
December 2024
Institute for Anatomy and Cell Biology, Saarland University, Homburg, Saar 66421, Germany. Electronic address:
Background: Little is known about the protein expression of the transient receptor potential canonical (TRPC) channels 1, 3, and 6 in the thyroid. Research in human tissue is insufficient. Our aim was to investigate the distribution of TRPC1, 3, and 6 in the healthy human thyroid.
View Article and Find Full Text PDFEur J Pharmacol
February 2025
Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan. Electronic address:
Ann Anat
December 2024
Saarland University Medical Center (UKS), Department of Gynecology and Obstetrics, Homburg 66424, Germany.
Background: Although to date the pathogenesis of endometriosis remains largely unexplained, it is known that processes of migration, proliferation and revascularization and thus calcium as a messenger substance play an important role. Consecutively, the present study examines the immunohistochemical expression of the calcium transient receptor potential channels 3 and 6 (TRPC3 and TRPC6) in ectopically located (outside the uterine cavity) endometrial tissue.
Methods: Laparoscopically collected and histomorphologically verified endometriosis tissues from several different intraabdominal locations were examined (n = 20) and immunohistochemical stainings were performed with anti-TRPC3 and anti-TRPC6 antibodies (Alomone Labs, Jerusalem).
Bioorg Med Chem
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States. Electronic address:
The TRPC3 protein plays a pivotal role in calcium signaling, influencing cell function. Aberrant TRPC3 expression is implicated in various pathologies, including cardiovascular diseases, tumors, and neurodegeneration. Despite its functional similarities with TRPC6 and TRPC7, TRPC3 exhibits distinct roles in disease contexts.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410013, Hunan, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!