Conservation of the centromere/kinetochore protein ZW10.

J Cell Biol

Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA.

Published: September 1997

Mutations in the essential Drosophila melanogaster gene zw10 disrupt chromosome segregation, producing chromosomes that lag at the metaphase plate during anaphase of mitosis and both meiotic divisions. Recent evidence suggests that the product of this gene, DmZW10, acts at the kinetochore as part of a tension-sensing checkpoint at anaphase onset. DmZW10 displays an intriguing cell cycle-dependent intracellular distribution, apparently moving from the centromere/kinetochore at prometaphase to kinetochore microtubules at metaphase, and back to the centromere/kinetochore at anaphase (Williams, B.C., M. Gatti, and M.L. Goldberg. 1996. J. Cell Biol. 134:1127-1140). We have identified ZW10-related proteins from widely diverse species with divergent centromere structures, including several Drosophilids, Caenorhabditis elegans, Arabidopsis thaliana, Mus musculus, and humans. Antibodies against the human ZW10 protein display a cell cycle-dependent staining pattern in HeLa cells strikingly similar to that previously observed for DmZW10 in dividing Drosophila cells. Injections of C. elegans ZW10 antisense RNA phenocopies important aspects of the mutant phenotype in Drosophila: these include a strong decrease in brood size, suggesting defects in meiosis or germline mitosis, a high percentage of lethality among the embryos that are produced, and the appearance of chromatin bridges at anaphase. These results indicate that at least some aspects of the functional role of the ZW10 protein in ensuring proper chromosome segregation are conserved across large evolutionary distances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132553PMC
http://dx.doi.org/10.1083/jcb.138.6.1289DOI Listing

Publication Analysis

Top Keywords

chromosome segregation
8
cell cycle-dependent
8
zw10 protein
8
zw10
5
conservation centromere/kinetochore
4
centromere/kinetochore protein
4
protein zw10
4
zw10 mutations
4
mutations essential
4
essential drosophila
4

Similar Publications

Chromosome segregation relies on kinetochores that assemble on specialized centromeric chromatin containing a histone H3 variant. In budding yeast, a single centromeric nucleosome containing Cse4 assembles at a sequence-defined 125 bp centromere. Yeast centromeric sequences are poor templates for nucleosome formation in vitro, suggesting the existence of mechanisms that specifically stabilize Cse4 nucleosomes in vivo.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.

View Article and Find Full Text PDF

During chromosome segregation, the spindle assembly checkpoint (SAC) detects errors in kinetochore-microtubule attachments. Timely activation and maintenance of the SAC until defects are corrected is essential for genome stability. Here, we show that shugoshin (Sgo1), a conserved tension-sensing protein, ensures the maintenance of SAC signals in response to unattached kinetochores during mitosis in a basidiomycete budding yeast Cryptococcus neoformans.

View Article and Find Full Text PDF

Microtubule-severing enzymes play essential roles in regulating diverse cellular processes, including mitosis and cytokinesis, by modulating microtubule dynamics. In the early branching protozoan parasite , microtubule-severing enzymes are involved in cytokinesis and flagellum length control during different life cycle stages, but none of them have been found to regulate mitosis in any life cycle form. Here, we report the biochemical and functional characterization of the microtubule-severing enzyme spastin in the procyclic form of .

View Article and Find Full Text PDF

Unlabelled: The centromere is a part of the chromosome that is essential for the even segregation of duplicated chromosomes during cell division. It is epigenetically defined by the presence of the histone H3 variant CENP-A. CENP-A associates specifically with a group of 16 proteins that form the centromere-associated network of proteins (CCAN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!