Pax genes are a family of developmental control genes that encode nuclear transcription factors. They are characterized by the presence of the paired domain, a conserved amino acid motif with DNA-binding activity. Originally, paired-box-containing genes were detected in Drosophila melanogaster, where they exert multiple functions during embryogenesis. In vertebrates, Pax genes are also involved in embryogenesis. Mutations in four out of nine characterized Pax genes have been associated with either congenital human diseases such as Waardenburg syndrome (PAX3), Aniridia (PAX6), Peter's anomaly (PAX6), renal coloboma syndrome (PAX2) or spontaneous mouse mutants (undulated (Pax1), Splotch (Pax3), Small eye (Pax6), Pax2(1)Neu), which all show defects in development. Recently, analysis of spontaneous and transgenic mouse mutants has revealed that vertebrate pax genes are key regulators during organogenesis of kidney, eye, ear, nose, limb muscles, vertebral column and brain. Like their Drosophila counterparts, vertebrate Pax genes are involved in pattern formation during embryogenesis, possibly by determining the time and place of organ initiation or morphogenesis. For most tissues, however, the nature of the primary developmental action of Pax transcription factors remains to be elucidated. One predominant theme is signal transduction during tissue interactions, which may lead to a position-specific regulation of cell proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bies.950190905 | DOI Listing |
Virulence
December 2025
Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China.
Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed "host shutoff." Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes.
View Article and Find Full Text PDFMol Biotechnol
December 2024
Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.
The development of genome technology has opened new possibilities for comparative primate genomics. Non-human primates share approximately 98% genome similarity and provides vital information into the genetic similarities and variances among species utilized as disease models. DNA study links unique genetic variations to common facial attributes such as nose and eyes.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya.
Background: The antioxidant and anticancer potential of natural compounds, particularly from medicinal plants, is increasingly being explored as alternatives to synthetic antioxidants and chemotherapeutics. Boascia coriacea (Pax) has been traditionally used for treating various ailments, including oxidative stress-related diseases and prostate cancer. However, there is a paucity of empirical evidence to validate the ethnomedicinal claims, hence this study.
View Article and Find Full Text PDFMar Biotechnol (NY)
November 2024
National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
Light sensitivity is important for marine benthic invertebrates, and it plays a vital role in the marine bivalves settling. Animal visual systems are enormously diverse; their development appears to be controlled by a set of conserved retinal determination genes (RDGs). Eyespots, as the simplest animal eyes, their appearance indicates the important effect on mussel larvae attachment.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt. Electronic address:
Background: Muscle tissue is essential for overall well-being that declines with age and different illnesses. Glucocorticoids, despite being efficient in treating inflammation, can induce muscle weakness (known as glucocorticoid-induced myopathy) by affecting protein breakdown and synthesis. Glucocorticoids have a negative impact on satellite cells, which play a role in muscle regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!