AI Article Synopsis

Article Abstract

Ca2+-induced Ca2+ release (CICR) from intracellular stores amplifies the Ca2+ signal that results from depolarization. In neurons, the amplification has been described as a graded process. Here we show that regenerative CICR develops as an all-or-none event in cultured rat dorsal root ganglion neurons in which ryanodine receptors have been sensitized to Ca2+ by caffeine. We used indo-1-based microfluorimetry in combination with whole-cell patch-clamp recording to characterize the relationship between Ca2+ influx and Ca2+ release. Regenerative release of Ca2+ was triggered when action potential-induced Ca2+ influx increased the intracellular Ca2+ concentration ([Ca2+]i) above threshold. The threshold was modulated by caffeine and intraluminal Ca2+. A relative refractory period followed CICR. The pharmacological profile of the response was consistent with Ca2+ influx through voltage-gated Ca2+ channels triggering release from ryanodine-sensitive stores. The activation of a suprathreshold response increased more than fivefold the amplitude and duration of the [Ca2+]i transient. The switch to a suprathreshold response was regulated very precisely in that addition of a single action potential to the stimulus train was sufficient for this transformation. Confocal imaging experiments showed that CICR facilitated propagation of the Ca2+ signal from the plasmalemma to the nucleus. This all-or-none reaction may serve as a switch that determines whether a given electrical signal will be transduced into a local or widespread increase in [Ca2+]i.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6573443PMC
http://dx.doi.org/10.1523/JNEUROSCI.17-19-07404.1997DOI Listing

Publication Analysis

Top Keywords

ca2+ influx
16
ca2+
14
ca2+ release
12
intracellular stores
8
influx voltage-gated
8
voltage-gated ca2+
8
ca2+ channels
8
ca2+ signal
8
suprathreshold response
8
release
5

Similar Publications

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release.

ACS Pharmacol Transl Sci

January 2025

Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.

Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.

View Article and Find Full Text PDF

Intranasal Administration of the Combination of Dextro-Ketamine and Dexmedetomidine for Treatment of Diabetic Neuropathic Pain in Rats.

J Pain Res

January 2025

Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.

View Article and Find Full Text PDF

Cyclic nucleotide-gated channel 5 (CNGC5), CNGC6, and CNGC9 (CNGC5/6/9 for simplicity) control Arabidopsis root hair (RH) growth by mediating the influx of external Ca to establish and maintain a sharp cytosolic Ca gradient at RH tips. However, the underlying mechanisms for the regulation of CNGCs remain unknown. We report here that calcium dependent protein kinase 1 (CPK1) directly activates CNGC5/6/9 to promote Arabidopsis RH growth.

View Article and Find Full Text PDF

RIPK3 activation of CaMKII triggers mitochondrial apoptosis in NIBV-infected renal tubular epithelial cells.

Vet Microbiol

January 2025

Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:

The purpose of this study was to investigate whether RIPK3-mediated programmed cell death can promote the replication and transmission of renal infectious bronchitis virus in renal tubular epithelial cells. Primary renal tubular epithelial cells were extracted from 1 to 7 day old Hy-Line Brown chicks, cultured in vitro by type I collagenase digestion, and infected with 1MOI SX9 strain. Cell samples were collected at 12 hpi, 24 hpi, 36 hpi and 48 hpi for experimental exploration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!