Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice.

J Neural Transm (Vienna)

Tianjin Medical University Hospital, Tianjin Neurological Institute, P.R. China.

Published: November 1997

To elucidate the neuroprotective effects of the iron chelator desferrioxamine (DFO) and the antioxidant vitamin E on excessive iron-induced free radical damage, a chronic iron-loaded mice model was established. The relationship between striatal iron content, oxidized to reduced glutathione ratio, hydroxyl radical (.OH) levels and dopamine concentrations were observed in DFO or vitamin E pretreated iron-loaded/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57BL/6 mice. The results demonstrated that both DFO and vitamin E inhibit the iron accumulation and thus reverses the increase in oxidized glutathione (GSSG), oxidized to reduced glutathione ratios, .OH and lipid peroxidation levels. The striatal dopamine concentration was elevated to normal value. Our data suggested that: (1) iron may induce neuronal damage and thus excessive iron in the brain may contribute to the neuronal loss in PD; (2) iron chelators and antioxidants may serve as potential therapeutic agents in retarding the progression of neurodegeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01277665DOI Listing

Publication Analysis

Top Keywords

oxidized reduced
8
reduced glutathione
8
dfo vitamin
8
iron
7
desferrioxamine vitamin
4
vitamin protect
4
protect iron
4
iron mptp-induced
4
mptp-induced neurodegeneration
4
neurodegeneration mice
4

Similar Publications

Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.

View Article and Find Full Text PDF

Multidrug-resistant tuberculosis (MDR-TB) poses a significant global health threat, especially when it involves the central nervous system (CNS). Tuberculous meningitis (TBM), a severe manifestation of TB, is linked to high mortality rates and long-term neurological complications, further exacerbated by drug resistance and immune evasion mechanisms employed by Mycobacterium tuberculosis (Mtb). Although pulmonary TB remains the primary focus of research, MDR-TBM introduces unique challenges in diagnosis, treatment, and patient outcomes.

View Article and Find Full Text PDF

In this study, we describe a low-noise complementary metal-oxide semiconductor (CMOS) image sensor (CIS) with a 10/11-bit hybrid single-slope analog-to-digital converter (SS-ADC). The proposed hybrid SS-ADC provides a resolution of 11 bits in low-light and 10 bits in high-light. To this end, in the low-light section, the digital-correlated double sampling method using a double data rate structure was used to obtain a noise performance similar to that of the 11-bit SS-ADC under low-light conditions, while maintaining linear in-out characteristics.

View Article and Find Full Text PDF

Toxic acetone gas emissions and leakage are a potential threat to the environment and human health. Gas sensors founded on metal oxide semiconductors (MOS) have become an effective strategy for toxic gas detection with their mature process. In the present work, an efficient acetone gas sensor based on Au-modified ZnO porous nanofoam (Au/ZnO) is synthesized by polyvinylpyrrolidone-blowing followed by a calcination method.

View Article and Find Full Text PDF

Ethanol (EtOH) gas detection has garnered considerable attention owing to its wide range of applications in industries such as food, pharmaceuticals, medical diagnostics, and fuel management. The development of highly sensitive EtOH-gas sensors has become a focus of research. This study proposes an optical interferometric surface stress sensor for detecting EtOH gas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!