A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Magnesium inhibits nickel-induced genotoxicity and formation of reactive oxygen. | LitMetric

Magnesium inhibits nickel-induced genotoxicity and formation of reactive oxygen.

Environ Health Perspect

Department of Preventive Medicine, Inha University Medical College, Inchon, Korea.

Published: July 1997

Nickel compounds are recognized to cause nasal and lung cancers. Magnesium is an effective protector against nickel-induced carcinogenesis in vivo, although its mechanisms of protection remain elusive. The effects of magnesium carbonate on the cytotoxicity and genotoxicity induced by nickel subsulfide were examined with respect to the inhibition of cell proliferation, micronuclei formation, DNA-protein cross-link formation, and intranuclear nickel concentration. The generation of reactive oxygen by nickel chloride was also analyzed by observing 8-hydroxy-deoxyguanosine formation from deoxyguanosine in the presence and absence of magnesium chloride. The suppression of up to 64% of the proliferation of BALB/3T3 fibroblasts by nickel subsulfide (1 microgram/ml) was reversed by magnesium. The nickel compound increased not only the number of micronuclei but also the amount of DNA-protein cross-links examined with CHO and BALB/3T3 cells, respectively. These genotoxic effects of nickel were again lessened by magnesium carbonate. In addition, the cellular accumulation of nickel increased 80-fold with nickel subsulfide treatment and decreased with magnesium carbonate treatment. Nickel also enhanced 8-hydroxy-deoxyguanosine formation in the presence of H2O2 and ascorbic acid, where magnesium played another suppressive role. In fact, inhibition by magnesium was still observed even in the absence of nickel treatment. These results suggest that the protective role of magnesium in nickel-induced cytotoxicity and genotoxicity can be attributed to its ability to reduce either the intracellular nickel concentration or reactive oxygen formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470112PMC
http://dx.doi.org/10.1289/ehp.97105744DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
12
nickel
12
magnesium carbonate
12
nickel subsulfide
12
magnesium
10
oxygen nickel
8
cytotoxicity genotoxicity
8
nickel concentration
8
8-hydroxy-deoxyguanosine formation
8
formation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!