Density of the human crystalline lens is related to the macular pigment carotenoids, lutein and zeaxanthin.

Optom Vis Sci

Vision Sciences Laboratory, College of Arts & Sciences, Arizona State University, Phoenix, USA.

Published: July 1997

Purpose: Although oxidative stress may play an important role in the development of age-related cataract, the degree of protection reported for antioxidant vitamins and carotenoids has been inconsistent across studies. These varied results may be due in part to the lack of good biomarkers for measuring the long-term nutritional status of the eye. The present experiments investigated the relationship between retinal carotenoids (i.e., macular pigment), used as a long-term measure of tissue carotenoids, and lens optical density, used as an indicator of lens health.

Methods: Macular pigment (460 nm) and lens (440, 500, and 550 nm) optical density were measured psychophysically in the same individuals. Groups of younger subjects--7 females (ages 24 to 36 years), and 5 males (ages 24 to 31 years)--were compared with older subjects--23 older females (ages 55 to 78 years), and 16 older males (ages 48 to 82 years).

Results: Lens density (440 nm) increased as a function of age (r = 0.65, p < 0.001), as expected. For the oldest group, a significant inverse relationship (y = 1.53-0.83x, r = -0.47, p < 0.001) was found between macular pigment density (440 nm) and lens density (440 nm). No relationship was found for the youngest group (p < 0.42).

Conclusions: The main finding of this study was an age-dependent, inverse relationship between macular pigment density and lens density. Macular pigment is composed of lutein and zeaxanthin, the only two carotenoids that have been identified in the human lens. Thus, an inverse relationship between these two variables suggests that lutein and zeaxanthin, or other dietary factors with which they are correlated, may retard age-related increases in lens density.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00006324-199707000-00017DOI Listing

Publication Analysis

Top Keywords

macular pigment
24
lens density
16
lutein zeaxanthin
12
density 440
12
inverse relationship
12
density
9
lens
9
optical density
8
females ages
8
ages years
8

Similar Publications

Peripapillary pachychoroid syndrome (PPS) is a recently described condition, classified within the pachychoroid disease spectrum characterized by focal or diffuse thickening of the choroid due to dilation of choroidal vessels in the Haller's layer (pachyvessels), thinning of the choriocapillaris and the Sattler's layer, and accompanied by increased choroidal permeability and damage to the retinal pigment epithelium. Unlike other pachychoroid diseases that involve changes in the central retina, PPS presents with choroidal thickening and intra- or subretinal fluid located nasally in the macular region, near the optic disc. This review aims to summarize and analyze current data on the clinical features, pathogenesis, and treatment options for PPS found in the literature.

View Article and Find Full Text PDF

Purpose: This study evaluates the efficacy of intravitreal injections (IVI) of faricimab in patients with neovascular age-related macular degeneration (nAMD) and retinal pigment epithelium detachment (RPED) resistant to other anti-VEGF agents.

Material And Methods: The study included 61 patients (61 eyes) with nAMD previously treated with aflibercept and/or brolucizumab IVIs. Three groups were formed: group 1 received aflibercept IVI (32 eyes), group 2 received brolucizumab IVI (14 eyes), and group 3 received aflibercept followed by brolucizumab IVI (15 eyes).

View Article and Find Full Text PDF

Purpose: This study evaluated the impact of phacoemulsification cataract surgery (PE) on anatomical and functional parameters, as well as the regimen and frequency of anti-VEGF injections in patients with neovascular age-related macular degeneration (nAMD) over a long-term period (up to 3 years).

Material And Methods: The study included 117 patients (117 eyes) diagnosed with nAMD and cataract, graded by LOCS: LOCS I (=56; 47.9%), LOCS II (=57; 48.

View Article and Find Full Text PDF

Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment.

View Article and Find Full Text PDF

Purpose: This review explores the role of pigment epithelium-derived factor (PEDF) in retinal degenerative and vascular disorders and assesses its potential both as an adjunct to established vascular endothelial growth factor inhibiting treatments for retinal vascular diseases and as a neuroprotective therapeutic agent.

Methods: A comprehensive literature review was conducted, focusing on the neuroprotective and anti-angiogenic properties of PEDF. The review evaluated its effects on retinal health, its dysregulation in ocular disorders, and its therapeutic application in preclinical models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!