Single rat hepatocytes, microinjected with the Ca(2+)-sensitive photoprotein aequorin, respond to agonists acting through the phosphoinositide signalling pathway by the generation of oscillations in cytosolic free Ca2+ concentration ([Ca2+]i). The duration of [Ca2+]i transients generated is characteristic of the receptor species activated; the variability results in differences in the rate of fall of [Ca2+]i from its peak. It is conceivable that the plasma membrane Ca(2+)-ATPase (PM Ca2+ pump) may have an important role in the mechanism underlying agonist specificity. It has recently been shown that an esterified form of carboxyeosin, an inhibitor of the red cell PM Ca2+ pump, is suitable for use in whole cell studies. Glucagon-(19-29) (mini-glucagon) inhibits the Ca2+ pump in liver plasma membranes, mediated by Gs. We show here that carboxyeosin and mini-glucagon inhibit Ca2+ efflux from populations of intact rat hepatocytes. We show that carboxyeosin and mini-glucagon enhance the frequency of oscillations induced by Ca(2+)-mobilizing agonists in single hepatocytes, but do not affect the duration of individual transients. Furthermore, we demonstrate that inhibition of the hepatocyte PM Ca2+ pump enables the continued generation of [Ca2+]i oscillations for a prolonged period following the removal of extracellular Ca2+.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0143-4160(97)90110-xDOI Listing

Publication Analysis

Top Keywords

ca2+ pump
20
plasma membrane
8
ca2+
8
rat hepatocytes
8
carboxyeosin mini-glucagon
8
[ca2+]i
5
pump
5
effects hepatocyte
4
hepatocyte [ca2+]i
4
[ca2+]i oscillator
4

Similar Publications

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

A key molecular dysfunction in heart failure is the reduced activity of the cardiac sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) in cardiac muscle cells. Reactivating SERCA2a improves cardiac function in heart failure models, making it a validated target and an attractive therapeutic approach for heart failure therapy. However, finding small-molecule SERCA2a activators is challenging.

View Article and Find Full Text PDF

In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.

View Article and Find Full Text PDF

Protective role of triiodothyronine in sepsis‑induced cardiomyopathy through phospholamban downregulation.

Int J Mol Med

March 2025

Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, P.R. China.

Sepsis is often a cause of mortality in patients admitted to the intensive care unit. Notably, the heart is the organ most susceptible to the impact of sepsis and this condition is referred to as sepsis‑induced cardiomyopathy (SIC). Low triiodothyronine (T3) syndrome frequently occurs in patients with sepsis, and the heart is one of the most important target organs for the action of T3.

View Article and Find Full Text PDF

Epilepsy is one of the most common neurological disorders. Calcium dysregulation and neuroinflammation are essential and common mechanisms in epileptogenesis. Sarco/endoplasmic reticulum (ER) Ca-ATPase 2b (SERCA2b), a crucial calcium regulatory pump, plays pathological roles in various calcium dysregulation-related diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!