We measured CBF and CO2 reactivity after traumatic brain injury (TBI) produced by controlled cortical impact (CCI) using magnetic resonance imaging (MRI) and spin-labeled carotid artery water protons as an endogenous tracer. Fourteen Sprague-Dawley rats divided into TBI (CCI; 4.02 +/- 0.14 m/s velocity; 2.5 mm deformation), sham, and control groups were studied 24 hours after TBI or surgery. Perfusion maps were generated during normocarbia (Paco2 30 to 40 mm Hg) and hypocarbia (PaCO2 15 to 25 mm Hg). During normocarbia, CBF was reduced within a cortical region of interest (ROI, injured versus contralateral) after TBI (200 +/- 82 versus 296 +/- 65 mL.100 g-1.min-1, P < 0.05). Within a contusion-enriched ROI, CBF was reduced after TBI (142 +/- 73 versus 280 +/- 64 mL.100 g-1.min-1, P < 0.05). Cerebral blood flow in the sham group was modestly reduced (212 +/- 112 versus 262 +/- 118 mL.100 g-1.min-1, P < 0.05). Also, TBI widened the distribution of CBF in injured and contralateral cortex. Hypocarbia reduced cortical CBF in control (48%), sham (45%), and TBI rats (48%) versus normocarbia, P < 0.05. In the contusion-enriched ROI, only controls showed a significant reduction in CBF, suggesting blunted CO2 reactivity in the sham and TBI group. CO2 reactivity was reduced in the sham (13%) and TBI (30%) groups within the cortical ROI (versus contralateral cortex). These values were increased twofold within the contusion-enriched ROI but were not statistically significant. After TBI, hypocarbia narrowed the CBF distribution in the injured cortex. We conclude that perfusion MRI using arterial spin-labeling is feasible for the serial, noninvasive measurement of CBF and CO2 reactivity in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004647-199708000-00005DOI Listing

Publication Analysis

Top Keywords

co2 reactivity
20
ml100 g-1min-1
12
g-1min-1 005
12
contusion-enriched roi
12
tbi
10
cerebral blood
8
blood flow
8
controlled cortical
8
cortical impact
8
magnetic resonance
8

Similar Publications

The transition to net zero emissions requires the capture of carbon dioxide from industrial point sources, and direct air capture (DAC) from the atmosphere for geological storage. Dissolved CO has reactivity to rock core, and while the majority of previous studies have concentrated on reservoir rock or cap-rock reactivity, the underlying seal formation may also react with CO. Drill core from the underlying seal of a target CO storage site was reacted at in situ conditions with pure CO, and compared with an impure CO stream with SO, NO and O that could be expected from hard to abate industries.

View Article and Find Full Text PDF

Study on the Synergistic Effect of Klotho and KRAS on Reducing Ferroptosis After Myocardial Infarction by Regulating RAP1/ERK Signaling Pathway.

Appl Biochem Biotechnol

January 2025

Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China.

Myocardial infarction (MI) is a coronary artery-related disease that seriously threatens human life and is the leading cause of sudden death worldwide, where a lack of nutrients and oxygen leads to an inflammatory response and death of cardiomyocytes. Ferroptosis is a form of non-apoptotic cell death associated with metabolic dysfunction, resulting in abnormal breakdown of glutamine and iron-dependent accumulation of reactive oxygen species (ROS) during metabolism. However, the molecular mechanism of ferroptosis in the pathogenesis of MI and the function of Klotho and KRAS on ferroptosis during MI remain unclear.

View Article and Find Full Text PDF

To clarify the effect of heating rate on the thermal decomposition process of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), this study employs molecular dynamic simulations to investigate the thermal decomposition of TATB at heating rates of 20, 40, 60, and 80 K/ps. The initial temperature is uniformly set to 300 K, while the final temperature is set to 3000 K. Results indicate that within the temperature range of 300-3000 K, the thermal decomposition rate of TATB decreases with increasing heating rate, whereas the initial decomposition temperature of TATB increases, consistent with the experimental pattern.

View Article and Find Full Text PDF

Discovering electrocatalysts that can efficiently convert carbon dioxide (CO) to valuable fuels and feedstocks using excess renewable electricity is an emergent carbon-neutral technology. A single metal atom embedded in doped graphene, , single-atom catalyst (SAC), possesses high activity and selectivity for electrochemical CO reduction (COR) to CO, yet further reduction to hydrocarbons is challenging. Here, using density functional theory calculations, we investigate stability and reactivity of a broad SAC chemical space with various metal centers (3d transition metals) and dopants (2p dopants of B, N, O; 3p dopants of P, S) as electrocatalysts for COR to methane and methanol.

View Article and Find Full Text PDF

Silylformates are emerging surrogates of hydrosilanes, able to reduce carbonyl groups in transfer hydrosilylation reactions, with the concomitant release of CO2. In this work, a new reactivity is revealed for silylformates, in the presence of imines. Using ruthenium catalysts, and lithium iodide as a co-catalyst, imines are shown to undergo hydrocarboxysilylation by formal insertion of CO2 to the N-Si bond of silyl amine to yield silyl carbamates in excellent yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!