Genetic instability is associated with aging in many species. One of the initiating factors for genetic instability is the movement of transposable elements (TEs), which occur in all prokaryotic and eukaryotic organisms. The hypothesis that TEs could be involved in the aging process is discussed and the correlation between aging and activity of TEs is analysed in a variety of biological systems.

Download full-text PDF

Source
http://dx.doi.org/10.1017/s0016672397002772DOI Listing

Publication Analysis

Top Keywords

transposable elements
8
genetic instability
8
role transposable
4
elements age-related
4
age-related genomic
4
genomic instability
4
instability genetic
4
instability associated
4
associated aging
4
aging species
4

Similar Publications

Pogo transposons provide tools to restrict cancer growth.

Mol Oncol

January 2025

Institut Curie, Inserm U932 - Immunity and Cancer, Paris, France.

Transposable elements provide material for novel gene formation. In particular, DNA transposons have contributed several essential genes involved in various physiological or pathological conditions. Here, we discuss recent findings by Tu et al.

View Article and Find Full Text PDF

Noncoding satellite DNA repeats are abundant at the pericentromeric heterochromatin of eukaryotic chromosomes. During interphase, sequence-specific DNA-binding proteins cluster these repeats from multiple chromosomes into nuclear foci known as chromocenters. Despite the pivotal role of chromocenters in cellular processes like genome encapsulation and gene repression, the associated proteins remain incompletely characterized.

View Article and Find Full Text PDF

Genomic imprinting is an epigenetic process that results in parent-of-origin effects on mammalian development and growth. Research on genomic imprinting in domesticated animals has lagged due to a primary focus on orthologs of mouse and human imprinted genes. This emphasis has limited the discovery of imprinted genes specific to livestock.

View Article and Find Full Text PDF

Transposable elements are DNA sequences that can move and replicate within genomes. Broadly, there are 2 types: autonomous elements, which encode the necessary enzymes for transposition, and nonautonomous elements, which rely on the enzymes produced by autonomous elements for their transposition. Nonautonomous elements have been proposed to regulate the numbers of transposable elements, which is a possible explanation for the persistence of transposition activity over long evolutionary times.

View Article and Find Full Text PDF

Emergence of fungal hybrids - Potential threat to humans.

Microb Pathog

January 2025

Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India. Electronic address:

Fungal hybrids arise through the interbreeding of distinct species. This hybridization process fosters increased genetic diversity and the emergence of new traits. Mechanisms driving hybridization include the loss of heterozygosity, copy number variations, and horizontal gene transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!