Background: The basic physiologic principle underlying cardiomyoplasty is long-term electrostimulation of a latissimus dorsi muscle (LDM) wrapped around the heart to obtain a phasic activity that could be integrated with ventricular kinetics. The aim of cardiomyoplasty is to prolong survival and to improve the quality of life of patients with severe chronic and irreversible myocardial failure by improving systolic contraction and correcting diastolic dysfunction.
Methods: To evaluate the long-term outcome of cardiomyoplasty, we investigated 82 patients electively undergoing this procedure in-our hospital. All patients had severe chronic heart failure that did not respond to optimal medical treatment. Patients had a mean age of 50 +/- 12 years (84% males). The cause of heart failure was ischemic (55%), idiopathic cardiomyopathy (34%), ventricular tumor (6%), and other (5%). The mean follow-up was 4.3 years.
Results: The mean New York Heart Association functional class improved after operation from 3.2 to 1.8. Average radioisotopic left ventricular ejection fraction increased from 17% +/- 6% to 28% +/- 3% (p < 0.05). Stroke volume index increased from 35 +/- 9 to 46 +/- 8 ml/beat/m2 (p < 0.05). The heart size remained stable at long term (evaluated by echo and computed tomography scanning). After cardiomyoplasty the number of successive hospitalizations resulting from congestive heart failure was reduced to 0.4 hospitalizations/patient/year (before operation 2.5, p < 0.05). Computed tomography scans showed at long-term a preserved LDM structure in 82% of patients who underwent operation. Survival probability at 7 years was 54% for the totality of patients, and 66% for patients who underwent operation in New York Heart Association functional class 3. Five patients underwent heart transplantation after cardiomyoplasty (mean delay 29 months), principally as a result of the natural evolution of their underlying heart disease, without major technical difficulties.
Conclusions: Our 10-year clinical experience demonstrates that cardiomyoplasty increases ejection fraction, improves functional class, and ameliorates quality of life. Ventricular volumes and diameters remain stable long term. LDM structure is maintained long term if electrostimulation is performed avoiding excessive myostimulation. Patient selection is the most important determinant for early and late outcome. Late death in patients undergoing cardiomyoplasty is principally due to sudden death. Our future aim is to incorporate a cardioverter-defibrillator in the cardiomyostimulator, thus improving long-term results. Cardiomyoplasty may delay or prevent end-stage heart failure and the need for heart transplantation.
Download full-text PDF |
Source |
---|
J Mol Histol
January 2025
Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
Malignant tumors are among the major diseases threatening human survival in the world, and advancements in medical technology have led to a steady increase in their detection rates worldwide. Despite unique clinical presentations across the spectrum of malignancies, treatment modalities generally adhere to common strategies, encompassing primarily surgical intervention, radiation therapy, chemotherapy, and targeted treatments. Uncovering the genetic elements contributing to cancer cell proliferation, metastasis, and drug resistance remains a pivotal pursuit in the development of novel targeted therapeutics.
View Article and Find Full Text PDFNature
January 2025
German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany.
Cardiomyocytes can be implanted to remuscularize the failing heart. Challenges include sufficient cardiomyocyte retention for a sustainable therapeutic impact without intolerable side effects, such as arrhythmia and tumour growth. We investigated the hypothesis that epicardial engineered heart muscle (EHM) allografts from induced pluripotent stem cell-derived cardiomyocytes and stromal cells structurally and functionally remuscularize the chronically failing heart without limiting side effects in rhesus macaques.
View Article and Find Full Text PDFEur J Intern Med
January 2025
Istituti Clinici Scientifici Maugeri, IRCCS, Institute of Bari, Bari, Italy.
Background: Assessing the relative performance of machine learning (ML) methods and conventional statistical methods in predicting prognosis in heart failure (HF) still remains a challenging research field.
Methods: The primary outcome was three-year mortality. The following 5 machine learning approaches were used for modeling: Random Forest (RF), Gradient Boosting, Extreme Gradient Boosting (XGBoost), Support Vector Machine, and Multilayer perceptron.
Cardiovasc Revasc Med
January 2025
Department of Cardiology, MedStar Georgetown University Hospital/MedStar Washington Hospital Center, Washington, DC, USA. Electronic address:
Acute myocardial infarction (AMI) remains one of the most common causes for cardiogenic shock (CS), with high inpatient mortality (40-50 %). Studies have reported the use of pulmonary artery catheters (PACs) in decompensated heart failure, but contemporary data on their use to guide management of AMI-CS and in different SCAI stages of CS are lacking. We investigated the association of PACs and clinical outcomes in AMI-CS.
View Article and Find Full Text PDFCardiovasc Revasc Med
January 2025
Department of Cardiovascular disease, Henry Ford, Detroit, MI, USA.
Introduction: Cardiogenic shock (CS) is marked by substantial morbidity and mortality. The two major CS etiologies include heart failure (HF) and acute myocardial infarction (AMI). The utilization trends of mechanical circulatory support (MCS) and their clinical outcomes are not well described.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!