This study examines the stabilizing factors of the glenohumeral joint against inferior translation over a range of subluxations. Factors examined included the glenohumeral capsular ligaments, the coracohumeral ligament, the rotator cuff forces, and the long head of the biceps force. Simulated muscle forces were applied to eight shoulder specimens with the arm near 0 degrees abduction. Stability was defined as the force required to inferiorly sublux the joint to a specified translation from the centered position and was evaluated under varying configurations of capsule cuts, humeral rotation, and muscle loads. The supraspinatus and biceps muscle forces were found to be important active stabilizers. Thus, tension in the long head of the biceps did not tend to depress the humeral head. The inferior glenohumeral ligament was an important passive stabilizer in external rotation. Understanding the effects of these factors adds insight into the underlying biomechanics of clinical shoulder instability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1058-2746(97)90005-7DOI Listing

Publication Analysis

Top Keywords

inferior glenohumeral
8
long head
8
head biceps
8
muscle forces
8
active passive
4
factors
4
passive factors
4
factors inferior
4
glenohumeral
4
glenohumeral stabilization
4

Similar Publications

Background: The incidence of revision shoulder arthroplasty continues to rise, and infection is a common indication for revision surgery. Treatment of periprosthetic joint infection (PJI) in the shoulder remains a controversial topic, with the literature reporting varying methodologies, including the use of debridement and implant retention, single-stage and 2-stage surgeries, antibiotic spacers, and resection arthroplasty. Single-stage revision has been shown to have a low rate of recurrent infection, making it more favorable because it precludes the morbidity of a 2-stage operation.

View Article and Find Full Text PDF

Effects of Biceps Rerouting on In Vivo Glenohumeral Kinematics in the Treatment of Large-to-Massive Rotator Cuff Tears.

Am J Sports Med

January 2025

Department of Sports Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Background: Arthroscopic repair with the biceps rerouting (BR) technique has been determined to lead to promising clinical and biomechanical outcomes for treating large-to-massive rotator cuff tears (LMRCTs). However, the in vivo effects of BR on glenohumeral kinematics during functional shoulder movements have not been fully elucidated.

Purpose: To investigate whether BR provides a better restoration of shoulder kinematics compared with conventional rotator cuff repair (RCR).

View Article and Find Full Text PDF

Background: Iatrogenic suprascapular nerve injury secondary to posterior drilling or screw penetration is a recognized complication of bone block or coracoid process transfers for anterior glenohumeral instability. We present the first cadaveric study that assesses the safety of posteroanterior reference guides and quantifies the relationship of the suprascapular nerve to posterior glenoid fixation with suture buttons.

Methods: Anterior glenoid bone block reconstruction with suture buttons utilizing a posteroanterior reference guide was performed in 10 fresh frozen cadavers via a posterior portal.

View Article and Find Full Text PDF

Background: There is a relative paucity of studies examining how the superior capsule reconstruction (SCR) may alter the kinematics of the glenohumeral joint capsule itself, specifically with respect to rotation and translation in the anterior-posterior and superior-inferior planes. This then raises the possibility that the SCR may be having unintended consequences on glenohumeral kinematics. The purpose of this study was to quantify the glenohumeral joint kinematics following Fascia Lata SCR (FL-SCR).

View Article and Find Full Text PDF

Background: Advancements in surgical planning, technique, and prosthesis design have improved adaptation to patient anatomy in reverse total shoulder arthroplasty (rTSA). Postoperative changes in deltoid and rotator cuff muscle length are important and may vary based on preoperative indications and prosthesis selection. The purpose of this study is to demonstrate the changes in deltoid and rotator cuff muscle length for planned rTSA using the spectrum of prosthesis configurations in both GHOA and RCA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!