We examined the ligand-binding site of the 5-hydroxytryptamine6 (5-HT6) receptor using site-directed mutagenesis. Interactions with residues in two characteristic positions of trans-membrane region V are important for ligand binding in several bioamine receptors. In the 5-HT6 receptor, one of these residues is a threonine (Thr196), whereas in most other mammalian 5-HT receptors, the corresponding residue is alanine. After transient expression in human embryonic kidney 293 cells, we determined the effects of the mutation T196A on [3H]d-lysergic acid diethylamide (LSD) binding and adenylyl cyclase stimulation. This mutation produced a receptor with a 10-fold reduced affinity for [3H]LSD and a 6-fold reduced affinity for 5-HT. The potency of both LSD and 5-HT for stimulation of adenylyl cyclase was also reduced by 18- and 7-fold, respectively. The affinity of other N1-unsubstituted ergolines (e.g., ergotamine, lisuride) was reduced 10-30 fold, whereas the affinity of N1-methylated ergolines (e.g., metergoline, methysergide, mesulergine) and other ligands, such as methiothepine, clozapine, ritanserin, amitriptyline, and mainserin, changed very little or increased. This indicates that in wild-type 5-HT6 receptor, Thr196 interacts with the N1 of N1-unsubstituted ergolines and tryptamines, probably forming a hydrogen bond. Based on molecular modeling, a serine residue in transmembrane region IV of the 5-HT2A receptor has previously been proposed to interact with the N1-position of 5-HT. When the corresponding residue of the 5-HT6 receptor (Ala154) was converted to serine, no change in the affinity of twelve 5-HT6 receptor ligands or in the potency of 5-HT and LSD could be detected, suggesting that this position does not contribute to the ligand binding site of the 5-HT6 receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.52.3.515 | DOI Listing |
Arch Razi Inst
June 2024
Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.
View Article and Find Full Text PDFInt J Pharm X
December 2024
Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
An innovative nanovehicle based on lipid nanocapsules (LNC) was designed to facilitate the passage of a new 5-HT receptor antagonist, namely PUC-10, through the blood-brain barrier. PUC-10 is a new synthetic -arylsulfonylindole that has demonstrated potent 5-HT receptor antagonist activity, but it exhibits poor solubility in water, which indicates limited absorption. The lipid nanocapsules designed had a nanometric size (53 nm), a monomodal distribution (PI<0.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland.
The serotonin 5-HT receptor (5-HTR), expressed almost exclusively in the brain, affects the Cdk5 signaling as well as the mTOR pathway. Due to the association of 5-HTR signaling with pathways involved in cancer progression, we decided to check the usefulness of 5-HTR ligands in the treatment of CNS tumors. For this purpose, a new group of low-base 5-HTR ligands was developed, belonging to arylsulfonamide derivatives of cyclic arylguanidines.
View Article and Find Full Text PDFInt J Obes (Lond)
January 2025
Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Université Lyon 1, Lyon, France.
J Mol Model
September 2024
São Carlos Institute of Chemistry, University of São Paulo, São Carlos, 13560-970, São Paulo, Brazil.
Context: Alzheimer's disease (AD) is the leading cause of dementia around the world, totaling about 55 million cases, with an estimated growth to 74.7 million cases in 2030, which makes its treatment widely desired. Several studies and strategies are being developed considering the main theories regarding its origin since it is not yet fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!