Colliding spherical calcium waves in enzymatically isolated rat cardiac myocytes develop new wavefronts propagating perpendicular to the original direction. When investigated by confocal laser scanning microscopy (CLSM), using the fluorescent Ca2+ indicator fluo-3 AM, "cusp"-like structures become visible that are favorably approximated by double parabolae. The time-dependent position of the vertices is used to determine propagation velocity and negative curvature of the wavefront in the region of collision. It is evident that negatively curved waves propagate faster than positively curved, single waves. Considering two perfectly equal expanding circular waves, we demonstrated that the collision of calcium waves is due to an autocatalytic process (calcium-induced calcium release), and not to a simple phenomenon of interference. Following the spatiotemporal organization in simpler chemical systems maintained under conditions far from the thermodynamic equilibrium (Belousov-Zhabotinskii reaction), the dependence of the normal velocity on the curvature of the spreading wavefront is given by a linear relation. The so-called velocity-curvature relationship makes clear that the velocity is enhanced by curvature toward the direction of forward propagation and decreased by curvature away from the direction of forward propagation (with an influence of the diffusion coefficient). Experimentally obtained velocity data of both negatively and positively curved calcium waves were approximated by orthogonal weighted regression. The negative slope of the straight line resulted in an effective diffusion coefficient of 1.2 x 10(-4) mm2/s. From the so-called critical radius, which must be exceeded to initiate a traveling calcium wave, a critical volume (with enhanced [Ca2+]i) of approximately 12 microm3 was calculated. This is almost identical to the volume that is occupied by a single calcium spark.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1181023 | PMC |
http://dx.doi.org/10.1016/S0006-3495(97)78156-6 | DOI Listing |
Physiol Rep
February 2025
Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany.
The zona glomerulosa (ZG) synthesizes the mineralocorticoid aldosterone. The primary role of aldosterone is the maintenance of volume and electrolyte homeostasis. Aldosterone synthesis is primarily regulated via tightly controlled oscillations in intracellular calcium levels in response to stimulation.
View Article and Find Full Text PDFActa Naturae
January 2024
St Petersburg University, St. Petersburg, 199034 Russian Federation.
Living organisms exhibit an impressive ability to expand the basic information encoded in their genome, specifically regarding the structure and function of protein. Two basic strategies are employed to increase protein diversity and functionality: alternative mRNA splicing and post-translational protein modifications (PTMs). Enzymatic regulation is responsible for the majority of the chemical reactions occurring within living cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
The effects of low-intensity ultrasound on plants such as piezoelectric and ultrasonic water baths, on plants have been extensively studied. However, the specific effect of airborne ultrasound on plant cells has yet to be reported. The present study was conducted to elucidate the physiological responses of plant cells to airborne US.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
Tau hyper-phosphorylation has been recognized as an essential contributor to neurodegeneration in Alzheimer's disease (AD) and related tauopathies. In the last decade, tau hyper-phosphorylation has gained considerable concern in AD therapeutic development. Tauopathies are manifested with a broad spectrum of symptoms, from dementia to cognitive decline and motor impairments.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China. Electronic address:
Preterm birth (PTB) remains a leading cause of neonatal morbidity and mortality, with inflammation-induced PTB posing a significant challenge due to its complex pathophysiology. To address this, we developed an in vitro platform utilizing hTERT-immortalized human myometrial (hTERT-HM) cells integrated with a multielectrode array (MEA) biosensing system and optical calcium imaging. Compared to primary uterine myometrial cells, hTERT-HM cells exhibit superior reproducibility, high scalability, and convenient manipulation, facilitating the consistent and large-scale investigations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!