The role of adrenal cortex hormones in the development of vascular changes was studied in 16 rabbits with alloxan diabetes. Formation of morphological changes in the aorta proved to be partially determined by functional condition of the adrenal cortex at the early periods of alloxan diabetes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

development vascular
8
vascular changes
8
rabbits alloxan
8
adrenal cortex
8
alloxan diabetes
8
[adrenal cortex
4
cortex function
4
function development
4
changes rabbits
4
alloxan diabetes]
4

Similar Publications

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) associated with major vasculature tumor extension is considered an advanced stage of disease to which palliative radiotherapy or chemotherapy is proposed. Surgical resection associated with chemotherapy or chemoembolization could be an opportunity to improve overall survival and recurrence-free survival in selected cases in a high-volume hepatobiliary center. Moreover, it has been 25 years since Couinaud described the entity of a posterior liver located behind an axial plane crossing the portal bifurcation.

View Article and Find Full Text PDF

This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.

View Article and Find Full Text PDF

Ultrasound is a primary diagnostic tool commonly used to evaluate internal body structures, including organs, blood vessels, the musculoskeletal system, and fetal development. Due to challenges such as operator dependence, noise, limited field of view, difficulty in imaging through bone and air, and variability across different systems, diagnosing abnormalities in ultrasound images is particularly challenging for less experienced clinicians. The development of artificial intelligence (AI) technology could assist in the diagnosis of ultrasound images.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!