A highly flexible, yet conserved polypeptide loop of Hsp10 mediates binding to Hsp60 in the course of chaperonin-dependent protein folding. Previous transferred nuclear Overhauser effect (trNOE) studies with peptides based on the mobile loop of the Escherichiacoli and bacteriophage T4 Hsp10s suggested that the mobile loop adopts a characteristic hairpin turn upon binding to the E. coli Hsp60 GroEL. In this paper, we identify the sequence and characterize the nascent structure and dynamics of the 18-residue mobile loop in the 15N-enriched human Hsp10. We also identify four residues of another flexible loop, the roof beta hairpin. The mobile loop and/or roof beta hairpin of several subunits are absent from the X-ray crystal structure of human Hsp10. NMR data suggest that the mobile loop of Hsp10 preferentially samples a hairpin conformation despite the fact that the backbone motion resembles that of a disordered polypeptide. Analysis of backbone dynamics by measurement of 15N relaxation times, T1 and T2, and the 1H-15N nuclear Overhauser effect (1H-15N NOE) indicates that motion is greatest near the center of the loop. Inversion of the temperature dependence of the T1 near the center of the loop marks a transition to motion with a dominant time scale of less than 3 ns. Analysis of the relaxation data by spectral density mapping shows that subnanosecond motion increases uniformly along the loop at elevated temperatures, whereas nanosecond motion increases near the ends of the loop and decreases near the center of the mobile loop. The transition to dominance by fast motion in the center of the loop occurs at a distance from the well-structured part of Hsp10 that is equal to the persistence length of an unstructured polypeptide. Simulation of the spectral density function for the 15N resonance and its temperature dependence using the Lipari-Szabo formalism suggests that the dominant time scales of loop motion range from 0.6 to 18 ns. For comparison, the time scale for molecular rotation of the 70 kDa Hsp10 heptamer is estimated to be 37 ns. Complex behavior of the T2 relaxation time indicates that motion also occurs on longer time scales. All of the modes of loop motion are likely to have an impact on Hsp10/Hsp60 interaction and therefore affect Hsp10/Hsp60 function as a chaperonin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi971141p | DOI Listing |
Anal Chem
January 2025
Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible.
View Article and Find Full Text PDFA previous study found that a domesticated bacterial group II intron-like reverse transcriptase (G2L4 RT) functions in double-strand break repair (DSBR) via microhomology-mediated end joining (MMEJ) and that a mobile group II intron-encoded RT has a basal DSBR activity that uses conserved structural features of non-LTR-retroelement RTs. Here, we determined G2L4 RT apoenzyme and snap-back DNA synthesis structures revealing novel structural adaptations that optimized its cellular function in DSBR. These included a unique RT3a structure that stabilizes the apoenzyme in an inactive conformation until encountering an appropriate substrate; a longer N-terminal extension/RT0-loop with conserved residues that together with a modified active site favors strand annealing; and a conserved dimer interface that localizes G2L4 RT homodimers to DSBR sites with both monomers positioned for MMEJ.
View Article and Find Full Text PDFHeliyon
January 2025
Centre for Tactile Internet with Human-in-the-Loop (CeTI), 6G Life, Technische Universität Dresden, Germany.
Recent research has highlighted a notable confidence bias in the haptic sense, yet its impact on learning relative to other senses remains unexplored. This online study investigated learning behaviour across visual, auditory, and haptic modalities using a probabilistic selection task on computers and mobile devices, employing dynamic and ecologically valid stimuli to enhance generalisability. We analysed reaction time as an indicator of confidence, alongside learning speed and task accuracy.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari, Japan.
Purpose: Redox homeostasis plays a key role in regulating the overall health and development of organisms. This study aimed to develop a compact and mobile continuous-wave (CW) electron paramagnetic resonance (EPR) imager to facilitate stable, highly sensitive fast three-dimensional (3D) whole-body imaging of nitroxide-infused mice.
Methods: A multiturn loop gap resonator with a diameter of 30 mm and length of 35 mm was designed for whole-body EPR imaging.
Addict Behav
January 2025
Department of Psychological and Brain Sciences, Indiana University, Bloomington IN, USA.
Alcohol use is prevalent among young adults, with significant rates of binge drinking and frequent reports of both positive and negative consequences. The current study investigates how positive drinking consequences influence subsequent incentives ratings and drinking behavior. Utilizing mobile daily diary data from 104 young adults over two weeks (event N = 507), we assessed the impact of event-specific positive consequences on future incentive ratings and drinking quantity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!