Persistent hyperinsulinaemic hypoglycaemia of infancy (PHHI), or nesidioblastosis, is a rare disorder which may be familial or sporadic, and which is characterized by unregulated secretion of insulin and profound hypoglycaemia in the neonate. The defect has been linked in some patients to mutations in the sulphonyl urea receptor gene (SUR). The present study investigated potential defects in the regulation of the insulin gene by glucose in a beta-cell line (NES 2Y) derived from a patient with PHHI. The results show that the insulin promoter is unresponsive to glucose in PHHI, and that this defect can be attributed to impaired expression of the transcription factor IUF1. Because IUF1 is involved not only in linking glucose metabolism to the control of the insulin, but is also a major regulator of beta-cell differentiation during embryogenesis, we propose that impaired expression of IUF1 contributes to beta-cell dysfunction in PHHI by leading to abnormal beta-cell differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(97)00874-0 | DOI Listing |
Elife
December 2024
Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism.
View Article and Find Full Text PDFSci Adv
January 2025
Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
S-Palmitoylation is a reversible post-translational modification involving saturated fatty acid palmitate-to-cysteine linkage in the protein, which guides many aspects of macrophage physiology in health and disease. However, the precise role and underlying mechanisms of palmitoylation in infection of macrophages remain elusive. Here, we found that infection induced the expression of zinc-finger DHHC domain-type palmitoyl-transferases (ZDHHCs), particularly ZDHHC2, in mouse macrophages.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
January 2025
School of Rehabilitation Therapy, Queen's University, Kingston, Ontario, Canada.
This article explores the existing research evidence on the potential effectiveness of lipreading as a communication strategy to enhance speech recognition in individuals with hearing impairment. A scoping review was conducted, involving a search of six electronic databases (MEDLINE, Embase, Web of Science, Engineering Village, CINAHL, and PsycINFO) for research papers published between January 2013 and June 2023. This study included original research papers with full texts available in English, covering all study designs: qualitative, quantitative, and mixed methods.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2025
Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233.
Heart failure (HF) is a leading cause of death worldwide. We have shown that pressure overload (PO)-induced inflammatory cell recruitment leads to heart failure in IL-10 knockout (KO) mice. However, it's unclear if PO-induced inflammatory cells also target the gut mucosa, causing gut dysbiosis and leakage.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
Purpose: Ocular neovascularization is a major cause of blindness. Although fibroblast growth factor-2 (FGF2) has been implicated in the pathophysiology of angiogenesis, the underlying mechanisms remain incompletely understood. The purpose of this study was to investigate the role of FGF2 in retinal neovascularization and elucidate its underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!