Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Insulin release occurs in two phases; sulphonylurea derivatives may have different potencies in stimulating first- and second-phase insulin release. We studied the effect of glibenclamide on insulin secretion at submaximally and maximally stimulating blood glucose levels with a primed hyperglycaemic glucose clamp. Twelve healthy male subjects, age (mean +/- SEM) 22.5 +/- 0.5 years, body mass index (BMI) 21.7 +/- 0.6 kgm-2, were studied in a randomized, double-blind study design. Glibenclamide 10 mg or placebo was taken before a 4-h hyperglycaemic clamp (blood glucose 8 mmol L-1 during the first 2 h and 32 mmol L-1 during the next 2 h). During hyperglycaemic clamp at 8 mmol L-1, the areas under the delta insulin curve (AUC delta insulin, mean +/- SEM) from 0 to 10 min (first phase) were not different: 1007 +/- 235 vs. 1059 +/- 261 pmol L-1 x 10 min (with and without glibenclamide, P = 0.81). However, glibenclamide led to a significantly larger increase in AUC delta insulin from 30 to 120 min (second phase): 16087 +/- 4489 vs. 7107 +/- 1533 pmol L-1 x 90 min (with and without glibenclamide respectively, P < 0.03). The same was true for AUC delta C-peptide no difference from 0 to 10 min but a significantly higher AUC delta C-peptide from 30 to 120 min on the glibenclamide day (P < 0.01). The M/I ratio (mean glucose infusion rate divided by mean plasma insulin concentration) from 60 to 120 min, a measure of insulin sensitivity, did not change: 0.26 +/- 0.05 vs. 0.22 +/- 0.03 mumol kg-1 min-1 pmol L-1 (with and without glibenclamide, P = 0.64). During hyperglycaemic clamp at 32 mmol L-1, the AUC delta insulin from 120 to 130 min (first phase) was not different on both study days: 2411 +/- 640 vs. 3193 +/- 866 pmol L-1 x 10 min (with and without glibenclamide, P = 0.29). AUC delta insulin from 150 to 240 min (second phase) also showed no difference: 59623 +/- 8735 vs. 77389 +/- 15161 pmol L-1 x 90 min (with and without glibenclamide, P = 0.24). AUC delta C-peptide from 120 to 130 min and from 150 to 240 min were slightly lower on the glibenclamide study day (both P < 0.04). The M/I ratio from 180 to 240 min did not change: 0.24 +/- 0.04 vs. 0.30 +/- 0.07 mumol kg-1 min-1 pmol L-1 (with and without glibenclamide, P = 0.25). In conclusion, glibenclamide increases second-phase insulin secretion only at a submaximally stimulating blood glucose level without enhancement of first-phase insulin release and has no additive effect on insulin secretion at maximally stimulating blood glucose levels. Glibenclamide did not change insulin sensitivity in this acute experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2362.1997.1710716.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!