A new neurosecretory cell type of the locust pars intercerebralis, immunolabelled with an antiserum against a vertebrate peptide related to gastrin-cholecystokinin (CCK-8(s)), was characterized both in situ and in primary cell cultures. Semithin sections of pars intercerebralis were first immunostained in order to identify neurosecretory cells containing CCK-like material and then examined by electron microscopy. The neurosecretory cells containing CCK-like material were paraldehyde fuchsin negative and were unequivocally identified in ultrathin sections adjacent to immunostained semithin sections. They exhibited neurosecretory vesicles of variable electron density, ranging in diameter from 150 to 250 nm. Immunogold labelled ultrathin sections adjacent to unlabelled ultrathin sections allowed for the unambiguous localization of CCK-like immunoreactive material over the neurosecretory vesicles of the cells containing CCK-like material. Immunoreactivity towards CCK-8(s)-like peptide could also be detected in pars intercerebralis neurosecretory neurons grown in vitro. The CCK-like positive neurons showed a multipolar morphology with fine processes radiating from the cell body. The positive cells had the same ultrastructural characteristics as the in situ CCK-like neurons. The pattern of neurite outgrowth on reactive CCK-like neurosecretory cells in vitro and the neuroanatomical pathway of the CCK-like immunoreactive neurosecretory cells in situ could be correlated. On the basis of their number, size and localization in the locust pars intercerebralis, it is possible that the CCK-like neurosecretory cells correspond to neurosecretory cell type C, which has not, to date, been identified at the ultrastructural level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1018569005079 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!