To gain insight into the mechanism(s) by which cells sense volume changes, specific predictions of the macromolecular crowding theory (A. P. Minton. In: Cellular and Molecular Physiology of Cell Volume Regulation, edited by K. Strange. Boca Raton, FL: CRC, 1994, p. 181-190. A. P. Minton, C. C. Colclasure, and J. C. Parker. Proc. Natl. Acad. Sci. USA 89: 10504-10506, 1992) were tested on the volume of internally perfused barnacle muscle cells. This preparation was chosen because it allows assessment of the effect on cell volume of changes in the intracellular macromolecular concentration and size while maintaining constant the ionic strength, membrane stretch, and osmolality. The predictions tested were that isotonic replacement of large macromolecules by smaller ones should induce volume decreases proportional to the initial macromolecular concentration and size as well as to the magnitude of the concentration reduction. The experimental results were consistent with these predictions: isotonic replacement of proteins or polymers with sucrose induced volume reductions, but this effect was only observed when the replacement was > or = 25% and the particular macromolecule had an average molecular mass of < or = 20 kDa and a concentration of at least 18 mg/ml. Volume reduction was effected by a mechanism identical with that of hypotonicity-induced regulatory volume decrease, namely, activation of verapamil-sensitive Ca2+ channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.1997.273.2.C360 | DOI Listing |
Sci Rep
January 2025
Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, 21959, Jeddah, Saudi Arabia.
Crystal violet (Cry) is an essential textile dye belonging to the triphenylmethane group, that is widely used in the textile industry. It is also applied for paper printing and Gram staining. Previously, it was significant as a topical antiseptic due to its antibacterial, antifungal, and anthelmintic properties.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589 Saudi Arabia. Electronic address:
This study aimed to explore a nanogel formulation containing acemannan as a carrier for the treatment of psoriasis-like skin inflammation. Several acemannan concentrations, such as F1 (2.5 %) and F2 (5 %), were used to prepare the nanogel formulation by homogenization.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemical Engineering, University of Technology, Baghdad, Iraq.
Palygorskite exhibits distinctive morphological and textural characteristics due to its fibrous and micropore nature. This research experimentally investigates the microstructure of palygorskite and how acid treatment changes the fibrous shape and ability to adsorb. Acetic and hydrochloric acid were used to study the effect of acid on palygorskite fibrous morphology.
View Article and Find Full Text PDFActa Biomater
January 2025
Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia. Electronic address:
Zinc (Zn)-based alloys and composites are anticipated to emerge as a category of degradable metallic biomaterials with exceptional prospects for bone-implant applications owing to their superior biocompatibility and biofunctionality. Unfortunately, the limited strength of Zn alloys in their as-cast state restricts their use in clinical applications. In this study, we started with pure magnesium (Mg) powders and Zn sheets, and successfully fabricated MgZn/Zn composites using accumulative roll bonding (ARB).
View Article and Find Full Text PDFReprod Toxicol
January 2025
Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea; Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
Nanoplastics (NPs) and microplastics (MPs) have become a global concern in recent years. Most current research on the impact of plastics on obstetrics has focused on their accumulation in specific tissues in animal models and the disease-causing potential of MPs. However, there is a relative lack of research on the cellular changes caused by the accumulation of MPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!