We studied the dimerization of the recombinant soluble extracellular domain of the epidermal growth factor receptor (sEGFR) in response to EGF-binding using multi-angle laser light scattering with size exclusion chromatography (SEC-MALLS). In the absence of EGF, sEGFR behaved as a monomer. However, upon EGF-binding, sEGFR formed a dimer with the stoichiometry of two EGF molecules bound to two sEGFR molecules [(EGF)2-(sEGFR)2]. We analyzed the chemical equilibrium of the dimer formation by SEC-MALLS using a dissociation constant of 0.25 microM for the binding of EGF to sEGFR. The calculated dissociation constant for EGF-induced sEGFR dimerization was found to be 2.4 +/- 0.9 microM. These experiments demonstrated that EGF induces receptor dimerization and that two EGF molecules are bound to an EGF-receptor dimer.

Download full-text PDF

Source
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021718DOI Listing

Publication Analysis

Top Keywords

extracellular domain
8
domain epidermal
8
epidermal growth
8
growth factor
8
factor receptor
8
egf segfr
8
egf molecules
8
molecules bound
8
dissociation constant
8
segfr
6

Similar Publications

Sotatercept in pulmonary hypertension and beyond.

Eur J Clin Invest

January 2025

Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy.

Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2.

View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2, also known as ERBB2) signaling promotes cell growth and differentiation, and is overexpressed in several tumor types, including breast, gastric and colorectal cancer. HER2-targeted therapies have shown clinical activity against these tumor types, resulting in regulatory approvals. However, the efficacy of HER2 therapies in tumors with HER2 mutations has not been widely investigated.

View Article and Find Full Text PDF

Biallelic mutations in multiple EGF domain protein 10 (MEGF10) gene cause EMARDD (early myopathy, areflexia, respiratory distress and dysphagia) in humans, a severe recessive myopathy, associated with reduced numbers of PAX7 positive satellite cells. To better understand the role of MEGF10 in satellite cells, we overexpressed human MEGF10 in mouse H-2k-tsA58 myoblasts and found that it inhibited fusion. Addition of purified extracellular domains of human MEGF10, with (ECD) or without (EGF) the N-terminal EMI domain to H-2k-tsA58 myoblasts, showed that the ECD was more effective at reducing myoblast adhesion and fusion by day 7 of differentiation, yet promoted adhesion of myoblasts to non-adhesive surfaces, highlighting the importance of the EMI domain in these behaviours.

View Article and Find Full Text PDF

Increasing evidence shows that pathogenic T cells in type 1 diabetes (T1D) that may have evaded negative selection recognize post-translational modified (PTM) epitopes of self-antigens. We have investigated the profiles of autoantibodies specifically targeting the deamidated epitopes of insulinoma antigen-2 extracellular domain (IA-2ec) to explore their relationship with T1D development. We compared the characteristics of autoantibodies targeting the IA-2ec Q>E epitopes (PTM IA-2ecA) as well as those targeting the IA-2ec unmodified epitopes (IA-2ecA) in participants across different stages of T1D development and in individuals with other types of diabetes and other kinds of autoimmunity.

View Article and Find Full Text PDF

E-Cadherin-Mediated Cell-Cell Adhesion and Invasive Lobular Breast Cancer.

Adv Exp Med Biol

January 2025

Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK.

E-cadherin is a transmembrane protein and central component of adherens junctions (AJs). The extracellular domain of E-cadherin forms homotypic interactions with E-cadherin on adjacent cells, facilitating the formation of cell-cell adhesions, known as AJs, between neighbouring cells. The intracellular domain of E-cadherin interacts with α-, β- and p120-catenins, linking the AJs to the actin cytoskeleton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!