The dehydrogenation of [1-(13)C]- and [2-(13)C]glucose into gluconate was monitored by NMR spectroscopy in living cell suspensions of two Rhizobium meliloti strains. The synthesis of gluconate was accompanied, in the cellular environment, by the formation of two gluconolactones, a gamma-lactone being detected in addition to the expected delta-lactone. These lactones--as well as the gluconate--could be further metabolized by the cells. The delta-lactone was utilized faster than the gamma-lactone. The presence--in significant amounts--and the relative stability of the lactones raise the question of their possible physiological significance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(97)00832-6 | DOI Listing |
Genome Biol Evol
January 2025
Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy.
In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
December 2024
Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina.
Int J Mol Sci
November 2024
Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland.
The phenylpropanoid biosynthesis pathway is involved in the response of plants to stress factors, including microorganisms. This paper presents how free-living strains of rhizobacteria KK5, KK7, KK4, and the symbiotic strain KK13 affect the expression of genes encoding phenylalanine ammonia-lyase (PAL), the activity of this enzyme, and the production of phenolic compounds in . Seedlings were inoculated with rhizobacteria, then at T0, T24, T72, and T168 after inoculation, the leaves and roots were analyzed for gene expression, enzyme activity, and the content of phenolic compounds.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
Background: Sinorhizobium meliloti is noted for its exceptional capacity to produce unsaturated fatty acids (UFAs). Earlier studies have indicated that S. meliloti primarily employs the FabA-FabB pathway for UFA synthesis, however, the mechanisms remain elusive.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, U.S.A.
Cobamides, the vitamin B (cobalamin) family of cofactors, are used by most organisms but produced by only a fraction of prokaryotes, and are thus considered key shared nutrients among microbes. Cobamides are structurally diverse, with multiple different cobamides found in most microbial communities. The ability to use different cobamides has been tested for several bacteria and microalgae, and nearly all show preferences for certain cobamides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!