Activation of phospholipase D in FRTL-5 thyroid cells by forskolin and dibutyryl-cyclic adenosine monophosphate.

Endocrinology

Signal Transduction Laboratories, Department of Medicine, University of Alberta, Edmonton, Canada.

Published: September 1997

We demonstrated previously that TSH activates phospholipase D (PLD) via stimulation of protein kinase C (PKC) in Fischer rat thyroid line (FRTL)-5 thyroid cells. To examine the role of the cAMP pathway in the regulation of PLD, we studied the effects of forskolin (0-100 microM; 30 min) and dibutyryl cAMP (dbcAMP; 0-1 mM; 30 min) on PLD activation. FRTL-5 thyroid cells were labeled mainly in phosphatidylcholine with [3H]myristate followed by incubation with 200 mM ethanol before the addition of agonist. PLD was assessed by the measurement of [3H]phosphatidylethanol. Forskolin (100 nM to 100 microM) and dbcAMP (100 pM to 100 microM) increased PLD activity significantly. Maximal responses to forskolin and dbcAMP exceed the PLD responses produced by 100 microU/ml of TSH. To determine whether the effects of forskolin and dbcAMP on PLD occurred as a consequence of PKC activation, FRTL-5 thyroid cells were preincubated for 10 min with the PKC inhibitors, chelerythrine (1 microM) or calphostin C (1 microM), or they were pretreated for 24 h with phorbol myristate acetate (100 nM) to down-regulate PKC. Unlike TSH-mediated PLD activation, these treatments had no effect on PLD activation by cAMP agonists. Forskolin (10 microM; 30 min) had no effect on the subcellular distribution of PKC alpha-, epsilon-, or zeta-isoforms, confirming the lack of involvement of PKC. The protein kinase A (PKA) inhibitors, H-89 (10 microM; 30 min) and dideoxyadenosine (5 nM; 10 min) significantly decreased the forskolin- and dbcAMP-mediated PLD activation without any effect on the phorbol ester-mediated PLD response. Following pretreatment with H-89 or dideoxyadenosine, the TSH-mediated PLD response was also significantly reduced. These studies indicate that forskolin and dbcAMP stimulate PLD in FRTL-5 thyroid cells directly via PKA without involvement of PKC. Studies of cells in the presence and absence of ethanol revealed approximately 60% of the phosphatidate plus diacylglycerol produced via TSH occurs via PLD activation. Although TSH-mediated inositol phosphate generation occurred with similar concentrations of TSH that led to PLD activation, 10-fold higher TSH concentrations were required to increase intracellular Ca2+. These results and the lack of a rapid Ca2+ transient following physiological TSH concentrations suggest that alternatives to conventional hydrolysis of phosphatidylinositol 4,5-bisphosphate may initiate PKC activation. Thus, the two major signal transduction systems in the FRTL-5 thyroid cell (PKA and PKC) appear to converge on PLD activation. Stimulation of both of these pathways by TSH may be required for optimal physiological activation of PLD.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo.138.9.5365DOI Listing

Publication Analysis

Top Keywords

pld activation
28
frtl-5 thyroid
24
thyroid cells
20
pld
17
microm min
12
forskolin dbcamp
12
activation
11
pkc
9
protein kinase
8
effects forskolin
8

Similar Publications

Cultivation of edible mushrooms on straw can significantly reduce production costs, provide notable environmental and ecological benefits. However, the molecular mechanisms via which mushrooms utilize straw are not well understood. We conducted a comparative transcriptomic analysis of oyster mushrooms cultivated on two different biomass substrates, namely, corncob and tobacco straw at various developmental stages.

View Article and Find Full Text PDF

Abscisic Acid, Microtubules and Phospholipase D-Solving a Cellular Bermuda Triangle.

Int J Mol Sci

December 2024

Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.

Rice plants are important food crops that are sensitive to cold stress. Microtubules (MTs) are highly associated with plant response to cold stress. The exogenous application of abscisic acid (ABA) can transiently induce the cold stability of microtubules.

View Article and Find Full Text PDF

New derivatives of the -decaborate anion [BH-O(CH)O(CH)C(O)-L-OCH] (An) (: L = Trp; : L = His; : L = Met; : L = Ala(2-oxopyrrolidin-3-yl) (Pld) were synthesized and isolated as tetraphenylphosphonium salts (PhP)An. Anions ; ; , and contain a pendant functional group from the L-tryptophan methyl ester, L-histidine methyl ester, L-methionine methyl ester, or methyl 2-amino-3-(2-oxopyrrolidin-3-yl)propanoate (-Trp-OCH, -His-OCH, -Met-OCH, or -Pld-OCH) residue, respectively, bonded with the boron cluster anion through the oxybis[(ethane-2,1-diyl)oxy] spacer. This pacer is formed as a result of the nucleophilic opening of the attached dioxane molecule in the [BHO(CH)O] starting derivative.

View Article and Find Full Text PDF

Metabolic syndrome (MetS) is a cluster of metabolic abnormalities, including visceral obesity, dyslipidemia, and insulin resistance. In this regard, visceral white adipose tissue (vWAT) plays a critical role, influencing energy metabolism, immunomodulation, and oxidative stress. Adipose-derived stem cells (ADSCs) are key players in these processes within vWAT.

View Article and Find Full Text PDF

Chemical Probes for Investigating the Endocannabinoid System.

Curr Top Behav Neurosci

January 2025

Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.

Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CBR) and type 2 (CBR) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!