Dichloromethane (DCM) dehalogenases enable facultative methylotrophic bacteria to utilize DCM as sole carbon and energy source. DCM-degrading aerobic methylotrophic bacteria expressing a type A DCM dehalogenase were previously shown to share a conserved 4.2 kb BamHI DNA fragment containing the dehalogenase structural gene, dcmA, and dcmR, the gene encoding a putative regulatory protein. Sequence analysis of a 10 kb DNA fragment including this region led to the identification of three types of insertion sequences identified as IS1354, IS1355 and IS1357, and also two ORFs, orf353 and orf192, of unknown function. Two identical copies of element IS1354 flank the conserved 4.2 kb fragment as a direct repeat. The occurrence of these newly identified IS elements was shown to be limited to DCM-utilizing methylotrophs containing a type A DCM dehalogenase. The organization of the corresponding dcm regions in 12 DCM-utilizing strains was examined by hybridization analysis using IS-specific probes. Six different groups could be defined on the basis of the occurrence, position and copy number of IS sequences. All groups shared a conserved 5.6 kb core region with dcmA, dcmR, orf353 and orf192 as well as IS1357. One group of strains including Pseudomonas sp. DM1 contained two copies of this conserved core region. The high degree of sequence conservation observed within the genomic region responsible for DCM utilization and the occurrence of clusters of insertion sequences in the vicinity of the dcm genes suggest that a transposon is involved in the horizontal transfer of the DCM-utilization character among methylotrophic bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00221287-143-8-2557 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China.
Three aerobic, pink-pigmented, Gram-negative, motile and rod-shaped bacterial strains, designated SD21, SI9 and SB2, were isolated from the phyllosphere of healthy litchis collected from three main producing sites of Guangdong Province, PR China. The 16S rRNA gene analysis showed that strains SD21 and SI9 belonged to the genus (.) with the highest similarity to DSM 19563 (98.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA.
Methyl-coenzyme M reductase (MCR), the key catalyst in the anoxic production and consumption of methane, contains an unusual 2-methylglutamine residue within its active site. data show that a B12-dependent radical SAM (rSAM) enzyme, designated MgmA, is responsible for this post-translational modification (PTM). Here, we show that two different MgmA homologs are able to methylate MCR when expressed in , an organism that does not normally possess this PTM.
View Article and Find Full Text PDFISME Commun
January 2024
BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
The archaeal class is widely and abundantly distributed in anoxic habitats. Metagenomic studies have suggested that they are mixotrophic, capable of CO fixation and heterotrophic growth, and involved in acetogenesis and lignin degradation. We analyzed 35 metagenome-assembled genomes (MAGs), including the first complete circularized MAG (cMAG) of the Bathy-6 subgroup, from the metagenomes of three full-scale pulp and paper mill anaerobic digesters and three laboratory methanogenic enrichment cultures maintained on pre-treated poplar.
View Article and Find Full Text PDFNat Commun
January 2025
School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China.
Microbial utilization of methanol for valorization is an effective way to advance green bio-manufacturing technology. Although synthetic methylotrophs have been developed, strategies to enhance their cell growth rate and internal regulatory mechanism remain underexplored. In this study, we design a synthetic methanol assimilation (SMA) pathway containing only six enzymes linked to central carbon metabolism, which does not require energy and carbon emissions.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany.
The conversion of CO into methanol depicts one of the most promising emerging renewable routes for the chemical and biotech industry. Under this regard, native methylotrophs have a large potential for converting methanol into value-added products but require targeted engineering approaches to enhance their performances and to widen their product spectrum. Here we use a systems-based approach to analyze and engineer M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!