Congenital absence of the vas deferens (CAVD) is a frequent cause for obstructive azoospermia and accounts for 1%-2% of male infertility. A high incidence of mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene has recently been reported in males with CAVD. We have investigated a cohort of 106 German patients with congenital bilateral or unilateral absence of the vas deferens for mutations in the coding region, flanking intron regions and promotor sequences of the CFTR gene. Of the CAVD patients, 75% carried CFTR mutations or disease-associated CFTR variants, such as the "5T" allele, on both chromosomes. The distribution of mutation genotypes clearly differed from that observed in cystic fibrosis. None of the CAVD patients was homozygous for delta F508 and none was compound heterozygous for delta F508 and a nonsense or frameshift mutation. Instead, homozygosity was found for a few mild missense or splicing mutations, and the majority of CAVD mutations were missense substitutions. Twenty-one German CAVD patients were compound heterozygous for delta F508 and R117H, which was the most frequent CAVD genotype in our study group. Haplotype analysis indicated a common origin for R117H in our population, whereas another frequent CAVD mutation, viz. the "5T allele" was a recurrent mutation on different intragenic haplotypes and multiple ethnic backgrounds. We identified a total of 46 different mutations and variants, of which 15 mutations have not previously been reported. Thirteen novel missense mutations and one unique amino-acid insertion may be confined to the CAVD phenotype. A few splice or missense variants, such as F508C or 1716 G-->A, are proposed here as possible candidate CAVD mutations with an apparently reduced penetrance. Clinical examination of patients with CFTR mutations on both chromosomes revealed elevated sweat chloride concentrations and discrete symptoms of respiratory disease in a subset of patients. Thus, our collaborative study shows that CAVD without renal malformation is a primary genital form of cystic fibrosis in the vast majority of German patients and links the particular expression of clinical symptoms in CAVD with a distinct subset of CFTR mutation genotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004390050518 | DOI Listing |
Pediatr Nephrol
January 2025
Department of Pediatric Nephrology, Istanbul University- Cerrahpasa, Cerrahpasa Faculty of Medicine, 34098, Istanbul, Turkey.
Autosomal recessive proximal renal tubular acidosis (AR-pRTA) with ocular abnormalities is a rare syndrome caused by variants in the SLC4A4 gene, which encodes Na/HCO3 cotransporter (NBCe1). The syndrome primarily affects the kidneys, but also causes extra-renal manifestations. Pancreatic type NBCe1 is located at the basolateral membrane of the pancreatic ductal cells and together with CFTR chloride channel, it is involved in bicarbonate secretion.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy,. Electronic address:
Sarcoglycanopathies are rare forms of severe muscular dystrophies currently without a therapy. Mutations in sarcoglycan (SG) genes cause the reduction or absence of the SG-complex, a tetramer located in the sarcolemma that plays a protective role during muscle contraction. Missense mutations in SGCA, which cause α-sarcoglycanopathy, otherwise known as LGMD2D/R3, lead to folding defective forms of α-SG that are discarded by the cell quality control.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia.
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient model is needed to screen therapeutic agents under development.
View Article and Find Full Text PDFBMJ Open
January 2025
Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia
Objectives: To determine the diagnostic yield of cystic fibrosis (CF) using a two-tiered genetic testing approach. Although newborn screening includes CF, this typically only covers a selection of common genetic variants, and with over 2000 reported in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, we hypothesised that patients will be missed and present clinically later in life.
Design: A retrospective study over a 5-year period (January 2018-December 2022).
Mol Biol Rep
January 2025
Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.
Background: Pathogenic mutations in the CFTR gene disrupt the normal function of the chloride ion channel CFTR protein, resulting in Cystic Fibrosis (C.F.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!