The immune capacity of young and adult axolotls (Ambystoma mexicanum) was evaluated by examining the combinatorial and junctional diversity of the VH chain. A large number of VDJ rearrangements isolated from 2.5-, 3.5-, 10-, and 24-month-old animals were sequenced. Six JH segments were identified with the canonical structure of all known vertebrate JHs, including the conserved Trp103-Gly104-X-Gly106 motif. Four core DH-like sequences were used by most (80%) of the VDJ junctions. These G-rich sequences had structures reminiscent of the TCRB DB sequences, and were equally used in their three reading frames. About 25% of the Igh, VDJ junctions from 3.5-month-old axolotls were out of frame, but most rearrangements were in frame at 10 and 24 months, suggesting that there is active selection of the productively rearranged Igh chains in the developing animals. There was no significant difference between the size of CDR3 in young (3.5 months) and subadult (10 months) axolotls (mean: 8.5 amino acids). However, the CDR3 loop was 1 amino acid longer in 2-year-old adult animals (mean: 9.5 residues). Several pairs of identical VDJ/CDR3 sequences were shared between 3.5-month-old individually analyzed axolotls, or between groups of axolotl of different ages. These identical rearrangements might be provided by the selection of some B-cell clones important for species survival, although the probability that different 3.5-month-old axolotl larvae would produce identical junctions seems very low, considering their limited number of B cells (less than 10(5)). The high frequency of tyrosine residues and the paucity of charged residues in the axolotl CDR3 loops may explain the polyreactivity of natural antibodies, and also clarify why it is so difficult to raise specific antibodies against soluble antigens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s002510050294 | DOI Listing |
Front Immunol
December 2024
Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.
Introduction: The domestic cat (Felis catus) is a valued companion animal and a model for virally induced cancers and immunodeficiencies. However, species-specific limitations such as a scarcity of immune cell markers constrain our ability to resolve immune cell subsets at sufficient detail. The goal of this study was to characterize circulating feline T cells and other leukocytes based on their transcriptomic landscape and T-cell receptor repertoire using single cell RNA-sequencing.
View Article and Find Full Text PDFbioRxiv
October 2024
Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109.
V(D)J recombination generates the diverse B and T cell receptors essential for recognizing a wide array of antigens. This diversity arises from the combinatorial assembly of V(D)J genes and the junctional deletion and insertion of nucleotides. While previous studies have shown that microhomology--short stretches of sequence homology between gene ends--can bias the recombination process, the extent of microhomology's impact , particularly in humans, remains unknown.
View Article and Find Full Text PDFAnimals (Basel)
September 2024
Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy.
In this paper, we report a comprehensive and consistent annotation of the locus encoding the β-chain of the equine T-cell receptor (TRB), as inferred from recent genome assembly using bioinformatics tools. The horse TRB locus spans approximately 1 Mb, making it the largest locus among the mammalian species studied to date, with a significantly higher number of genes related to extensive duplicative events. In the region, 136 TRBV (belonging to 29 subgroups), 2 TRBD, 13 TRBJ, and 2 TRBC genes, were identified.
View Article and Find Full Text PDFElife
August 2024
Laboratoire de physique de l'École normale supérieure, CNRS, PSL University, Sorbonne Université and Université de Paris, Paris, France.
B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B-cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution, and dynamics.
View Article and Find Full Text PDFbioRxiv
May 2024
Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States.
Introduction: The domestic cat (Felis catus) is a valued companion animal and a model for virally induced cancers and immunodeficiencies. However, species-specific limitations such as a scarcity of immune cell markers constrain our ability to resolve immune cell subsets at sufficient detail. The goal of this study was to characterize circulating feline T cells and other leukocytes based on their transcriptomic landscape and T-cell receptor repertoire using single cell RNA-sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!