Here, we describe the cloning and further characterization of chicken ARBP, an abundant nuclear protein with a high affinity for MAR/SARs. Surprisingly, ARBP was found to be homologous to the rat protein MeCP2, previously identified as a methyl-CpG-binding protein. A region spanning 125 amino acids in the N-terminal halves is 96.8% identical between chicken ARBP and rat MeCP2. A deletion mutation analysis using Southwestern and band shift assays identified this highly conserved region as the MAR DNA binding domain. Alignment of chicken ARBP with rat and human MeCP2 proteins revealed six trinucleotide amplifications generating up to 34-fold repetitions of a single amino acid. Because MeCP2 was previously localized to pericentromeric heterochromatin in mouse chromosomes, we analyzed the in vitro binding of ARBP to various repetitive sequences. In band shift experiments, ARBP binds to two chicken repetitive sequences as well as to mouse satellite DNA with high affinity similar to that of its binding to chicken lysozyme MAR fragments. In mouse satellite DNA, use of several footprinting techniques characterized two high-affinity binding sites, whose sequences are related to the ARBP binding site consensus in the chicken lysozyme MAR (5'-GGTGT-3'). Band shift experiments indicated that methylation increased in vitro binding of ARBP to mouse satellite DNA two- to fivefold. Our results suggest that ARBP/MeCP2 is a multifunctional protein with roles in loop domain organization of chromatin, the structure of pericentromeric heterochromatin, and DNA methylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC232414PMC
http://dx.doi.org/10.1128/MCB.17.9.5656DOI Listing

Publication Analysis

Top Keywords

chicken arbp
12
band shift
12
mouse satellite
12
satellite dna
12
arbp
9
arbp homologous
8
homologous rat
8
methyl-cpg-binding protein
8
protein mecp2
8
high affinity
8

Similar Publications

Plasticity at the DNA recognition site of the MeCP2 mCG-binding domain.

Biochim Biophys Acta Gene Regul Mech

September 2019

Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Electronic address:

MeCP2 is an abundant protein, involved in transcriptional repression by binding to CG and non-CG methylated DNA. However, MeCP2 might also function as a transcription activator as MeCP2 is found bound to sparsely methylated promoters of actively expressed genes. Furthermore, Attachment Region Binding Protein (ARBP), the chicken ortholog of MeCP2, has been reported to bind to Matrix/scaffold attachment regions (MARs/SARs) DNA with an unmethylated 5'-CAC/GTG-3' consensus sequence.

View Article and Find Full Text PDF

Methyl-CpG-binding protein 2 (MeCP2) is a multifunctional protein involved in chromatin organization and silencing of methylated DNA. MAR-BD, a 125-amino-acid residue domain of chicken MeCP2 (cMeCP2, originally named ARBP), is the minimal protein fragment required to recognize MAR elements and mouse satellite DNA. Here we report the solution structure of MAR-BD as determined by multidimensional heteronuclear NMR spectroscopy.

View Article and Find Full Text PDF

Here, we describe the cloning and further characterization of chicken ARBP, an abundant nuclear protein with a high affinity for MAR/SARs. Surprisingly, ARBP was found to be homologous to the rat protein MeCP2, previously identified as a methyl-CpG-binding protein. A region spanning 125 amino acids in the N-terminal halves is 96.

View Article and Find Full Text PDF

The chicken lysozyme gene domain is flanked by nuclear matrix attachment regions (MARs) on each side. We have previously shown that bilaterally flanking 5'MARs in stably transfected artificial genetic units enhance expression of a reporter transgene and dampen position effects of the chromatin structure at the site of integration. The 5' MAR was now dissected into smaller fragments that were monitored for effects on transgene expression in mouse 3T3 cells by a similar assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!