The aromatic fatty acids phenylacetate (PA) and phenylbutyrate (PB) are novel antitumour agents currently under clinical evaluation. Their ability to induce tumour differentiation in laboratory models and their low clinical toxicity profile makes them promising candidates for combination with conventional therapies. In the present studies, we characterized the interactions between these aromatic fatty acids and radiation, using as a model cell lines derived from cancers of the prostate, breast, brain and colon. Analysis of the radiation response of the tumour lines using the linear-quadratic model, demonstrated that cellular exposure to pharmacological, non-toxic concentrations of either PA or PB resulted in time-dependent and contrasting changes in radiation response. While drug pretreatment for 24 h reduced radiation sensitivity (significant alterations in both alpha and beta parameters), pre treatment for 72 h significantly increased radiosensitivity (significant alterations in alpha and beta parameters). In replicating tumour cells, these changes were accompanied by a gradual G1-phase arrest. Cytostasis alone, however, could not explain radiosensitization, as similar alterations in radiation response were documented also in non-cycling cells. Modulation of tumour radiobiology by PA and PB was tightly correlated with early rise followed by decline in intracellular glutathione levels and the activity of antioxidant enzymes such as catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase and glutathione S-transferase. Although in vitro findings identify the aromatic fatty acids PA and PB as a new class of non-toxic modulators of radiation response, the antagonistic effect of these compounds on radiation response needs further examination. Our data strongly suggest that for PA or PB to have a role in clinical radiotherapy, appropriate scheduling of combination therapies must take into account their time-dependent effects in order to achieve clinical radiosensitization.

Download full-text PDF

Source
http://dx.doi.org/10.1080/095530097143437DOI Listing

Publication Analysis

Top Keywords

radiation response
24
aromatic fatty
12
fatty acids
12
tumour cells
8
phenylacetate phenylbutyrate
8
alterations alpha
8
alpha beta
8
beta parameters
8
radiation
7
response
6

Similar Publications

Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.

View Article and Find Full Text PDF

NetSDR: Drug repurposing for cancers based on subtype-specific network modularization and perturbation analysis.

Biochim Biophys Acta Mol Basis Dis

January 2025

MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China. Electronic address:

Cancer, a heterogeneous disease, presents significant challenges for drug development due to its complex etiology. Drug repurposing, particularly through network medicine approaches, offers a promising avenue for cancer treatment by analyzing how drugs influence cellular networks on a systemic scale. The advent of large-scale proteomics data provides new opportunities to elucidate regulatory mechanisms specific to cancer subtypes.

View Article and Find Full Text PDF

Purpose: Proton FLASH has been investigated using cyclotron and synchrocyclotron beamlines but not synchrotron beamlines. We evaluated the impact of dose rate (ultra-high [UHDR] vs. conventional [CONV]) and beam configuration (shoot-through [ST] vs.

View Article and Find Full Text PDF

The chemokine CX3CL1 promotes intraperitoneal tumour growth despite enhanced T-cell recruitment in ovarian cancer.

Neoplasia

January 2025

Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany. Electronic address:

T-cell recruiting chemokines are required for a successful immune intervention in ovarian cancer, and also for the efficacy of modern anticancer agents such as PARP inhibitors. The chemokine CX3CL1 recruits tumour-suppressive T-cells into solid tumours, but also mediates cell-cell adhesions, e.g.

View Article and Find Full Text PDF

Therapeutic strategies for fungating and ulcerating breast cancers: A systematic review and narrative synthesis.

Breast

December 2024

Radiation Oncology Unit, REM Radioterapia Srl, 95029, Viagrande, Italy; Department of Medicine and Surgery, University of Enna Kore, Enna, Italy. Electronic address:

Background: To identify optimal therapeutic strategies for managing fungating, large or ulcerating breast tumors and highlight existing gaps in the literature.

Methods: We conducted a systematic search of Medline, Embase, APA, PsycInfo, CAB abstracts, Scopus, and Web of Science from inception to June 30, 2024, including studies on patients with fungating, large, or ulcerating breast cancers.

Results: The search identified 7917 studies, with 79 meeting the inclusion criteria: 62 case reports, 7 case series, and 10 cohort studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!