AI Article Synopsis

  • Autosomal recessive limb girdle muscular dystrophy (LGMD2) is a diverse genetic disorder with at least six locations identified, affecting gene products related to muscle function.
  • In a study of 20 Turkish families, most patients showed symptom onset before age 10, with clinical severity ranging from mild to severe.
  • Genetic analysis revealed deficiencies in the sarcoglycan (SG) complex in 6 out of 17 cases, while 10 families exhibited calpain-3 deficiency, suggesting a complex relationship between genotype and clinical presentation in LGMD2.

Article Abstract

Autosomal recessive limb girdle muscular dystrophy (LGMD2) is a clinically and genetically heterogenous group of diseases involving at least six different loci. Five genes have already been identified: calpain-3 at LGMD2A (15q15), and four members of the sarcoglycan (SG) complex, alpha-SG at LGMD2D (17q21), beta-SG at LGMD2E (4q12), gamma-SG at LGMD2C (13q12), and delta-SG at LGMD2F (5q33-q34). The gene product at LGMD2B (2p13-p16) is still unknown and at least one other gene is still unmapped. We investigated 20 Turkish families (18 consanguineous) diagnosed as having LGMD2. Most of our patients had onset of symptoms before age 10. The phenotypes varied from severe to benign. We analyzed the SG complex by immunofluorescence and/or western blot. Genotyping was performed using markers defining the six known loci and the suspected genes were screened for mutations. Six of 17 index cases showed deficiency of the SG complex, by immunofluorescence and/or western blot. Seven cases involved one of the known genes of the SG complex (alpha, 2; beta, 1; and gamma, 4 cases), and five mutations were documented in the alpha- and gamma-SG genes. After linkage analysis, 10 families were characterized as having LGMD2A (calpain-3 deficiency), and all mutations were eventually identified. One family was classified as having LGMD2B and 1 family that has normal SGs was linked to the chromosome 5q33-q34 locus (LGMD2F). In 1 family there was no linkage to any of the known LGMD2 loci. It appears that in Turkey, there is a broad spectrum of genes and defects involved in LGMD2. It may be possible to correlate genotype to phenotype in LGMD2. All severe cases belonged to the gamma-SG-deficiency group. Nine calpain-3-deficient cases had intermediate and 1 had moderate clinical courses. The LGMD2B patient had a moderate clinical expression, whereas the LGMD2F case was truly benign.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.410420214DOI Listing

Publication Analysis

Top Keywords

autosomal recessive
8
recessive limb
8
limb girdle
8
girdle muscular
8
complex immunofluorescence
8
immunofluorescence and/or
8
and/or western
8
western blot
8
moderate clinical
8
lgmd2
5

Similar Publications

Late-Onset Krabbe Disease: Case Report of Two Patients in a Chinese Family and Literature Review.

Mol Genet Genomic Med

February 2025

Department of Orthopeadic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.

Background: Krabbe disease (KD; globoid cell leucodystrophy) is a rare autosomal recessive lipid storage disorder that affects the white matter of the peripheral and central nervous. Late-onset KD is less frequently diagnosed and often presents with milder symptoms, making accurate diagnosis challenging, especially when distinguishing it from peripheral neuropathy. In this report, we present two cases of late-onset KD in a Chinese family.

View Article and Find Full Text PDF

A deep intronic variant associated with X-linked hypophosphatemia in a Finnish family.

JBMR Plus

February 2025

Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland.

Hypophosphatemic rickets is a rare bone disease characterized by short stature, bone deformities, impaired bone mineralization, and dental problems. Most commonly, hypophosphatemic rickets is caused by pathogenic variants in the X-chromosomal gene, but autosomal dominant and recessive forms also exist. We investigated a Finnish family in which the son (index, 29 yr) and mother (56 yr) had hypophosphatemia since childhood.

View Article and Find Full Text PDF

Naxos disease is a rare autosomal recessive condition combining arrhythmogenic right ventricular cardiomyopathy, woolly hair, and palmoplantar keratoderma. The first identified causative variant was in the gene encoding the desmosomal protein plakoglobin. Naxos disease exhibits fibro-fatty myocardial replacement with immunohistological abnormalities in cardiac protein and signaling pathways, highlighting the role of inflammation and potential anti-inflammatory treatments.

View Article and Find Full Text PDF

Background: Primary coenzyme Q10 (CoQ10) deficiency is an autosomal recessive genetic disease caused by mitochondrial dysfunction. Variants in Coenzyme Q8B () can cause primary CoQ10 deficiency. -related glomerulopathy is a recently recognized glomerular disease that most often presents as steroid-resistant nephrotic syndrome (SRNS) in childhood.

View Article and Find Full Text PDF

Background: Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder with dysregulated glyoxylate metabolism in the liver. Oxalate over-production leads to renal stones, progressive kidney damage and renal failure, with potentially life-threatening systemic oxalosis. Nedosiran is a synthetic RNA interference therapy, designed to reduce hepatic lactate dehydrogenase (LDH) to decrease oxalate burden in PH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!