Kinetic mechanism for p38 MAP kinase.

Biochemistry

Department of Molecular Design and Diversity, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, USA.

Published: August 1997

p38 has been shown to be a critical enzyme in the pro-inflammatory cytokine pathway and is a member of the mitogen-activated protein (MAP) kinase family. While the details for p38 activation and subsequent signal transduction have begun to be elucidated, little is known about the kinetic mechanism for p38. In this study, we have determined the kinetic mechanism for p38 MAP kinase. Data from initial velocity patterns in the presence and absence of a dead-end inhibitor and two triarylimidazole p38 inhibitors were consistent with an ordered sequential mechanism for p38 with protein substrate, glutathione S-transferase-activating transcription factor 2 (GST-ATF2), binding before ATP. The ATP analog, adenylyl methylenediphosphonate (AMP-PCP), and two triarylimidazoles were competitive inhibitors versus ATP and uncompetitive inhibitors versus GST-ATF2. Equilibrium binding studies utilizing a tritiated ATP-competitive inhibitor were also consistent with this mechanism and suggest an inability of ATP to bind to p38 in the absence of protein substrate. Moreover, the Michaelis constant for GST-ATF2 was 12-fold greater than the dissociation constant, indicating that the binding of ATP affected the binding of GST-ATF2. An ordered sequential mechanism with protein substrate binding first is unique to p38 compared to cyclic AMP-dependent protein kinase (cAPK) and most tyrosine kinases and helps to explain the interaction between enzyme, substrates, and inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi9706778DOI Listing

Publication Analysis

Top Keywords

mechanism p38
16
kinetic mechanism
12
map kinase
12
protein substrate
12
p38
9
p38 map
8
ordered sequential
8
sequential mechanism
8
binding atp
8
inhibitors versus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!