Engineering the independent folding of the subtilisin BPN' prodomain: analysis of two-state folding versus protein stability.

Biochemistry

Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, and The National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA.

Published: August 1997

In complex with subtilisin BPN', the 77 amino acid prodomain folds into a stable compact structure comprising a four-stranded antiparallel beta-sheet and two three-turn alpha-helices. When isolated from subtilisin, the prodomain is 97% unfolded even under optimal folding conditions. Traditionally, to study stable proteins, denaturing cosolvents or temperatures are used to shift the equilibrium from folded to unfolded. Here we manipulate the folding equilibrium of the unstable prodomain by introducing stabilizing mutations generated by design. By sequentially introducing three stabilizing mutations into the prodomain we are able to shift the equilibrium for independent folding from 97% unfolded to 65% folded. Spectroscopic and thermodynamic analysis of the folding reaction was carried out to assess the effect of stability on two-state behavior and the denatured state. The denatured states of single and combination mutants are not discernably different in spite of a range of DeltaGunfolding from -2.1 to 0.4 kcal/mol. Conclusions about the nature of the denatured state of the prodomain are based on CD spectral data and calorimetric data. Two state folding is observed for a combination mutant of marginal stability (DeltaG = 0). Evidence for its two-state folding is based on the observed additivity of individual mutations to the overall DeltaGunfolding and the conformity of DeltaGunfolding vs T to two-state assumptions as embodied in the Gibbs-Helmholz equation. We believe our success in stabilizing the two-state folding reaction of the prodomain originates from the selection of mutations with improved ability to fold subtilisin rather than selection for increase in secondary structure content. The fact that a small number of mutations can stabilize the independent folding of the prodomain implies that most of the folding information already exists in the wild-type amino acid sequence in spite of the fact that the unfolded state predominates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi9703958DOI Listing

Publication Analysis

Top Keywords

independent folding
12
two-state folding
12
folding
11
subtilisin bpn'
8
prodomain
8
amino acid
8
97% unfolded
8
shift equilibrium
8
stabilizing mutations
8
folding reaction
8

Similar Publications

Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.

View Article and Find Full Text PDF

Subwavelength light trapping in periodic structures with high quality (Q) factors is discovered to hold strong light-matter interactions for a variety of applications. Although dual-band or even multiple-band high-Q resonances are applicable to extend the operation range of a nanophotonic device, manipulating the high-Q modes individually is a necessity to implement plural intriguing applications in one system as well as optimize the capabilities across each spectrum. In this work, a novel approach is presented to independently control dual high-Q modes with distinct origins in an all-dielectric metasurface system.

View Article and Find Full Text PDF

Obesity is a major global health problem and at the same time a financial burden for social security systems. For a long time, conventional lifestyle interventions have tried unsuccessfully to find a solution. It has been proven that only interventions that ultimately address the central control centers of hunger, appetite and satiety will lead to sustained weight loss.

View Article and Find Full Text PDF

The Application of Machine Learning Algorithms to Predict HIV Testing in Repeated Adult Population-Based Surveys in South Africa: Protocol for a Multiwave Cross-Sectional Analysis.

JMIR Res Protoc

January 2025

South African Medical Research Council/University of Johannesburg Pan African Centre for Epidemics Research Extramural Unit, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.

Background: HIV testing is the cornerstone of HIV prevention and a pivotal step in realizing the Joint United Nations Program on HIV/AIDS (UNAIDS) goal of ending AIDS by 2030. Despite the availability of relevant survey data, there exists a research gap in using machine learning (ML) to analyze and predict HIV testing among adults in South Africa. Further investigation is needed to bridge this knowledge gap and inform evidence-based interventions to improve HIV testing.

View Article and Find Full Text PDF

Quantitative characterization of protein conformational landscapes is a computationally challenging task due to their high dimensionality and inherent complexity. In this study, we systematically benchmark several widely used dimensionality reduction and clustering methods to analyze the conformational states of the Trp-Cage mini-protein, a model system with well-documented folding dynamics. Dimensionality reduction techniques, including Principal Component Analysis (PCA), Time-lagged Independent Component Analysis (TICA), and Variational Autoencoders (VAE), were employed to project the high-dimensional free energy landscape onto 2D spaces for visualization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!