Survival of Salmonella typhimurium pathogens was followed in the slurry solid fraction from a pig farm waste water treatment plant. The tested S. typhimurium pathogens have survived for 117 days. The solid fraction was kept in the laboratory at 20-23 degrees C. Indicatory microorganisms at the beginning of the experiment numbered 10(8)-10(9) CFU in 1 ml sample. This number decreased by 4-5 series throughout the experiment, except for faecal coliform bacteria, which were not detected after 43 days of cultivation. Enterobacteria showed a decreasing tendency until day 83, however, on the final sampling (day 117) their count was almost double. Of physico-chemical parameters, pH showed the most striking variations. Its initial value of 6.9 increased to 8.1 at day 30, then decreased to 7.2 at day 43, and increased to 7.7 at the end of the experiment. Ammoniacal nitrogen in solid fraction was almost twice as high as the initial level. Other physico-chemical parameters were not changed significantly throughout the experiment. On the results of this experiment, decimal reduction times T90 were determined for indicatory microorganisms during the storage of solid fraction under constant conditions: psychrophilic bacteria 31.25; mesophilic bacteria 38.12; coliform bacteria 27.49; faecal streptococci 24.57 and enterobacteria 30.46 days. These data suggest a relatively long time of survival for indicatory microorganisms in the solid fraction from agricultural waste water treatment plants.

Download full-text PDF

Source

Publication Analysis

Top Keywords

solid fraction
24
waste water
12
water treatment
12
indicatory microorganisms
12
salmonella typhimurium
8
farm waste
8
typhimurium pathogens
8
coliform bacteria
8
physico-chemical parameters
8
solid
6

Similar Publications

As a result of the current high throughput of the fast fashion collections and the concomitant decrease in product lifetime, we are facing enormous amounts of textile waste. Since textiles are often a blend of multiple fibers (predominantly cotton and polyester) and contain various different components, proper waste management and recycling are challenging. Here, we describe a high-yield process for the sequential chemical recycling of cotton and polyester from mixed waste textiles.

View Article and Find Full Text PDF

This study investigates steam washing (SW) as an innovative pretreatment for municipal solid waste incineration fly ash (MSWI-FA) dechlorination, useful for a more effective stabilization in cementitious matrix. By using a detailed analytical approach (XRPD, XRF, ICP-MS, IRMS, SEM) and geochemical modeling, great focus is dedicated on pollutant leaching reduction and changes in ash physicochemical characteristics as a function of exposure time. The research demonstrates that SW removes up to 70 % cadmium, 17 % zinc, and 10 % lead, primarily by dissolving the soluble and carbonate/hydroxide fractions and promoting the reprecipitation and adsorption of heavy metals into more stable compounds.

View Article and Find Full Text PDF

Microplastic and microfiber contamination in the Tiber River, Italy: Insights into their presence and chemical differentiation.

Mar Pollut Bull

January 2025

Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29-31, H-1113 Budapest, Hungary; National Laboratory for Water Sciences and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29-31, H-1113 Budapest, Hungary; Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H1113 Budapest, Hungary. Electronic address:

Microplastics (MPs) are an emerging environmental concern, but studies on these contaminants, particularly in river ecosystems, remain scarce. Research has indicated that MPs in the environment are predominantly microfibers (MFs); however, a few studies suggest that the MFs encountered are chiefly of natural origin. In this study, we aimed to improve the understanding of MP/MFs (both plastic and natural), among microparticle (solid particles >10 μm to <5000 μm; mainly of plastic as well as natural origin) loads in the Tiber River, Italy, by analyzing the physicochemical properties of surface water and assessing the abundance and characteristics of MPs-MFs at three sites: Ponte Grillo, Aniene, and Magliana, along a 60 km stretch.

View Article and Find Full Text PDF

The valid method was developed for analyzing empagliflozin in serum/plasma/urine using a molecularly imprinted ghost polymer-solid-phase extraction approach (MISPE) with liquid chromatographic methodology. Methacrylic acid (MAA) was used as the monomer, 2,2 azobis isobutyronitrile as the initiator and ethylene glycol dimethacrylate as the cross-linker in the free radical polymerization procedure. Empagliflozin was loaded onto the polymer and eluted with 1 mL of a 9:1 MeOH:acetic acid solution.

View Article and Find Full Text PDF

Optimizing key parameters for grinding energy efficiency and modeling of particle size distribution in a stirred ball mill.

Sci Rep

January 2025

Minerals Beneficiation and Agglomeration Department, Minerals Technology Institute, Central Metallurgical Research & Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo, 11722, Egypt.

Fine grinding using a stirred ball mill can enhance ore liberation but incurs high energy consumption, which can be minimized by optimizing operating conditions. This study explores the impact of key operational parameters-grinding time, stirrer tip speed, solid concentration, and feed size-on grinding efficiency, evaluated using specific energy inputs, in stirred milling of Egyptian copper ore. The particle size distribution (PSD) of ground products was simulated using the Gates-Gaudin-Schuhmann model (GGS) and the Rosin-Rammler-Benne (RRB) function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!