Protein S (PS), which functions as a species-specific anticoagulant cofactor to activated protein C (APC), is a mosaic protein that interacts with the phospholipid membrane via its gamma-carboxyglutamate-rich (Gla) module. This module is followed by the thrombin-sensitive region (TSR), sensitive to thrombin cleavage, four epidermal growth factor (EGF)-like modules and a last region referred to as the sex hormone binding globulin (SHBG) domain. Of these, the TSR and the first EGF-like regions have been shown to be important for the species-specific interaction with APC. Difficulties in crystallising PS have so far hindered its study at the atomic level. Here, we report theoretical models for the Gla and EGF-1 modules of human PS constructed using prothrombin and factor X experimental structures. The TSR was built interactively. Analysis of the model linked with the large body of biochemical literature on PS and related proteins leads to suggestions that (i) the TSR stabilises the calcium-loaded Gla module through hydrophobic and ionic interactions and its conformation depends on the presence of the Gla module; (ii) the TSR does not form a calcium binding site but is protected from thrombin cleavage in the calcium-loaded form owing to short secondary structure elements and close contact with the Gla module; (iii) the PS missense mutations in this region are consistent with the structural data, except in one case which needs further investigation; and (iv) the two PS 'faces' involving regions of residues Arg49-Gln52-Lys97 (TSR-EGF-1) and Thr103-Pro106 (EGF-1) may be involved in species-specific interactions with APC as they are richer in nonconservative substitution when comparing human and bovine protein S. This preliminary model helps to plan future experiments and the resulting data will be used to further validate and optimise the present structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1007912929828 | DOI Listing |
Cell Rep
December 2024
Department of Entomology, South China Agricultural University, Guangzhou 510640, China. Electronic address:
Front Immunol
October 2024
Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's, Seattle, WA, United States.
Med Dosim
August 2024
Department of Medical Physics, All India Institute of Medical Sciences, New Delhi, India.
This study assesses the dosimetric effectiveness of the commercial trade-off optimization (TO) module in comparison to iterative optimization for volumetric modulated arc therapy (VMAT) in craniospinal irradiation technique.Fifteen patients who had previously undergone VMAT-based craniospinal irradiation (CSI) using manual optimization (TP) underwent re-optimization with trade-off optimization (MCO). All patients were treated using the Halcyon-E O-ring linear accelerator, with maximum field size of 28×28 cm², a 6MV unflattened beam, and adjacent isocenter field overlap of 10 cm.
View Article and Find Full Text PDFSensors (Basel)
June 2024
Department of Computer Science, Hekma School of Engineering, Computing, and Design, Dar Al-Hekma University, Jeddah 22246-4872, Saudi Arabia.
Detecting cracks in building structures is an essential practice that ensures safety, promotes longevity, and maintains the economic value of the built environment. In the past, machine learning (ML) and deep learning (DL) techniques have been used to enhance classification accuracy. However, the conventional CNN (convolutional neural network) methods incur high computational costs owing to their extensive number of trainable parameters and tend to extract only high-dimensional shallow features that may not comprehensively represent crack characteristics.
View Article and Find Full Text PDFBr J Radiol
May 2024
Institute of Applied Science and Humanities, GLA University, Mathura, UP-281406, India.
Objectives: The aim of this study was to determine the number of trade-off explored (TO) library plans required for building a RapidPlan (RP) library that would generate the optimal clinical treatment plan.
Methods: We developed 2 RP models, 1 each for the 2 clinical sites, head and neck (HN) and cervix. The models were created using 100 plans and were validated using 70 plans (VP) for each site respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!