Download full-text PDF

Source

Publication Analysis

Top Keywords

continuing challenge
4
challenge predictive
4
predictive factors
4
factors rheumatoid
4
rheumatoid arthritis
4
continuing
1
predictive
1
factors
1
rheumatoid
1
arthritis
1

Similar Publications

Real-time monitoring of hemodynamics is crucial for diagnosing disorders within implanted vascular grafts and facilitating timely treatment. Integrating vascular grafts with advanced flexible electronics offers a promising approach to developing smart vascular grafts (SVGs) capable of continuous hemodynamic monitoring. However, most existing SVG devices encounter significant challenges in practical applications, particularly regarding biomechanical compatibility and the effective evaluation of vascular status.

View Article and Find Full Text PDF

Purpose: Xylazine has been associated with necrotic soft tissue wounds that have placed a challenging burden on patients who inject drugs in the Philadelphia region's health care system over the last few years. An analysis of our initial experience is being presented to guide future treatment and directions for future research.

Methods: A retrospective review of 55 patients with patient-reported xylazine use and associated upper-extremity wounds at a single institution was performed.

View Article and Find Full Text PDF

In situ growth of ZIF-8 nanoparticles on pure chitosan nanofibrous membranes for efficient antimicrobial wound dressings.

Int J Biol Macromol

January 2025

Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:

Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.

View Article and Find Full Text PDF

Objectives: To characterize the 1) types of material goods (non-medical items) offered in pediatric residency continuity clinics, 2) consistency of good availability, 3) funding sources used to support supply, 4) whether goods are provided in response to social needs screening, and 5) common challenges with provision. To assess the extent to which provision of goods varied by clinic size and proportion of publicly insured patients.

Methods: Faculty and staff members from clinics in the Academic Pediatric Association's Continuity Research Network (APA CORNET) completed an online survey about material goods provided in their clinic in the preceding 12 months.

View Article and Find Full Text PDF

Nowadays, most of the newly developed active pharmaceutical ingredients (APIs) consist of cohesive particles with a mean particle size of <100μm, a wide particle size distribution (PSD) and a tendency to agglomerate, therefore they are difficult to handle in continuous manufacturing (CM) lines. The current paper focuses on the impact of various glidants on the bulk properties of difficult-to-handle APIs. Three challenging powders were included: two extremely cohesive APIs (acetaminophen micronized (APAPμ) and metoprolol tartrate (MPT)) which previously have shown processing issues during different stages of the continuous direct compression (CDC)-line and a spray dried placebo (SD) powder containing hydroxypropylmethyl cellulose (HPMC), known for its sub-optimal flow with a high specific surface area (SSA) and low density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!